Find the volume of the solid generated when the region R bounded by the given curves is revolved about the indicated axis:
Circular Disk Method:
Circular Ring Method:
Cylindrical Shell Method:
1
"\\pi\\int\\limits_0^16 (4-\\sqrt{x})^2dx=\\pi\\int\\limits_0^4 (16-8\\sqrt{x}+x)dx=\\\\\n\\pi (16x-\\frac{16}{3}(\\sqrt{x})^3+\\frac{x^2}{2})|_{x=0}^{x=16}dx=\\pi(256-\\frac{1024}{3}+\\frac{256}{2})=\\\\\n\\frac{128}{3}\\pi"
2
"\\pi\\int\\limits_0^9 (3-\\sqrt{y})^2dy=\\pi\\int\\limits_0^9 (9-6\\sqrt{y}+y)dy=\\\\\n\\pi (9y-\\frac{12}{3}(\\sqrt{y})^3+\\frac{y^2}{2})|_{y=0}^{y=9}dx=\\pi(81-108+\\frac{81}{2})=\\\\\n\\frac{27}{2}\\pi"
3
"\\pi\\int\\limits_0^4(\\sqrt{y})^2-(\\frac{y}{2})^2dy=\\pi(\\frac{y^2}{2}-\\frac{y^3}{12})|_{y=0}^{y=4}=\\\\\n\\pi(8-\\frac{16}{3})=\\frac{8}{3}\\pi"
4
"\\pi\\int\\limits_0^4(4-\\frac{y^2}{2})^2-(4-2\\sqrt{y})^2dy=\\pi(16y-\\frac{4y^3}{3}+\\frac{y^5}{20}-16y+\\frac{32}{3}(\\sqrt{y})^3-2y^2)|_{y=0}^{y=4}=\\pi (-\\frac{256}{3}+51.2+\\frac{256}{3}-32)=\\\\\n=19.2\\pi"
5
"\\pi\\int\\limits_0^2x(2x-x^2)dx=\\pi(\\frac{16}{3}-\\frac{16}{4})=\\frac{4}{3}\\pi"
6
"\\frac{\\pi}{2}\\int\\limits_0^2(2-x)(4x-x^3)dx=\\frac{\\pi}{2}(-\\frac{32}{3}+\\frac{32}{5}+16-8)=(4-\\frac{32}{15})\\pi=\\frac{28}{15}\\pi"
7
"\\pi\\int\\limits_{0}^{35}x(\\sqrt{60^2-x^2}-\\sqrt{60^2-35^2})dx=\\pi(\\frac{-1}{3}((\\sqrt{60^2-35^2})^3-60^3)-\\frac{5}{2}\\sqrt{95}x^2)=\\\\\n=\\pi(\\frac{125}{3}(12^3-95\\sqrt{95})-\\frac{6125}{2}(\\sqrt{95}))=\\pi(72000-\\frac{42125}{6}\\sqrt{95})\\approx 11214 ft^3"
Comments
Leave a comment