Question #196057

Find the length of the curve given by x= t^3, y= 2t^2, in 0≤ t≤2


1
Expert's answer
2021-05-23T23:50:03-0400

length of the curve=abxt2+yt2dt=02(3t2)2+(4t)2dt=029t4+16t2dt=02t9t2+16dtPut u=9t2+16    du=18tdtTherefore,02(3t2)2+(4t)2dt=118udu=227u3/2=227[(9t2+16)3/2]02=11.52\text{length of the curve}=\int_a^b \sqrt{x_t^2+y_t^2}dt\newline =\int_0^2 \sqrt{(3t^2)^2+(4t)^2}dt\newline =\int_0^2 \sqrt{9t^4+16t^2}dt\newline =\int_0^2 t\sqrt{9t^2+16}dt\newline Put\space u=9t^2+16\newline \implies du=18t dt\newline Therefore, \newline \int_0^2 \sqrt{(3t^2)^2+(4t)^2}dt=\frac{1}{18}\int \sqrt{u}du\newline =\frac{2}{27} {u^{3/2}}\newline =\frac{2}{27} [(9t^2+16)^{3/2}]_0^2\newline =11.52


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS