Answer to Question #195640 in Calculus for Emmanuella

Question #195640

The demand and total cost functions of a good are respectively and



Find expressions for TR, (profit) , MR, and MC in terms of Q.

Solve the equation


and hence determine the value of Q which maximizes profit.

Verify that, at the point of maximum profit, MR=MC.


1
Expert's answer
2021-05-26T17:36:25-0400

The demand and total cost functions of a good are


4P+Q16=04P+Q-16=0

and


TC=4+2Q3Q210+Q320TC=4+2Q-\dfrac{3Q^2}{10}+\dfrac{Q^3}{20}

respectively.

a)


4P+Q16=04P+Q-16=0

P=414QP=4-\dfrac{1}{4}Q


TR=PQ=(414Q)Q=4QQ24TR=P\cdot Q=(4-\dfrac{1}{4}Q)\cdot Q=4Q-\dfrac{Q^2}{4}

TR=4QQ24TR=4Q-\dfrac{Q^2}{4}

Tπ=TRTCT\pi=TR-TC

Tπ=4QQ24(4+2Q3Q210+Q320)T\pi=4Q-\dfrac{Q^2}{4}-(4+2Q-\dfrac{3Q^2}{10}+\dfrac{Q^3}{20})

Tπ=4+2Q+Q220Q320T\pi=-4+2Q+\dfrac{Q^2}{20}-\dfrac{Q^3}{20}


MR=d(TR)dQ=ddQ(4QQ24)=4Q2MR=\dfrac{d(TR)}{dQ}=\dfrac{d}{dQ}(4Q-\dfrac{Q^2}{4})=4-\dfrac{Q}{2}

MR=4Q2MR=4-\dfrac{Q}{2}

MC=d(TC)dQ=ddQ(4+2Q3Q210+Q320)MC=\dfrac{d(TC)}{dQ}=\dfrac{d}{dQ}(4+2Q-\dfrac{3Q^2}{10}+\dfrac{Q^3}{20})

=23Q5+3Q220=2-\dfrac{3Q}{5}+\dfrac{3Q^2}{20}

b) Solve the equation


d(Tπ)dQ=0\dfrac{d(T\pi)}{dQ}=0

d(Tπ)dQ=ddQ(4+2Q+Q220Q320)\dfrac{d(T\pi)}{dQ}=\dfrac{d}{dQ}(-4+2Q+\dfrac{Q^2}{20}-\dfrac{Q^3}{20})

=2+Q103Q220=2+\dfrac{Q}{10}-\dfrac{3Q^2}{20}

2+Q103Q220=0,Q02+\dfrac{Q}{10}-\dfrac{3Q^2}{20}=0, Q\geq 0

3Q22Q40=03Q^2-2Q-40=0

D=(2)24(3)(40)=484=222D=(-2)^2-4(3)(40)=484=22^2

Q=2±2222(3)=1±113Q=\dfrac{2\pm\sqrt{22^2}}{2(3)}=\dfrac{1\pm11}{3}

Q1=103,Q2=4Q_1=-\dfrac{10}{3}, Q_2=4

Since Q0Q\geq 0

If 0Q<4,d(Tπ)dQ>0,Tπ0\leq Q<4, \dfrac{d(T\pi)}{dQ}>0, T\pi increases.

If Q>4,d(Tπ)dQ<0,TπQ>4, \dfrac{d(T\pi)}{dQ}<0, T\pi decreases.

The function TπT\pi has a local maximum at Q=4.Q=4.

Since the function TπT\pi has the only extremum for Q0,Q\geq 0, then the function TπT\pi has the absolute maximum at Q=4Q=4 for Q0.Q\geq 0.


c) Q=4Q=4


MR(4)=442=2MR(4)=4-\dfrac{4}{2}=2

MC(4)=23(4)5+3(4)220=2MC(4)=2-\dfrac{3(4)}{5}+\dfrac{3(4)^2}{20}=2

Then at the point of the maximum profit (Q=4)(Q=4)


MR(4)=2=MC(2)MR(4)=2=MC(2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment