The demand and total cost functions of a good are
4P+Q−16=0 and
TC=4+2Q−103Q2+20Q3 respectively.
a)
4P+Q−16=0
P=4−41Q
TR=P⋅Q=(4−41Q)⋅Q=4Q−4Q2
TR=4Q−4Q2
Tπ=TR−TC
Tπ=4Q−4Q2−(4+2Q−103Q2+20Q3)
Tπ=−4+2Q+20Q2−20Q3
MR=dQd(TR)=dQd(4Q−4Q2)=4−2Q
MR=4−2Q
MC=dQd(TC)=dQd(4+2Q−103Q2+20Q3)
=2−53Q+203Q2 b) Solve the equation
dQd(Tπ)=0
dQd(Tπ)=dQd(−4+2Q+20Q2−20Q3)
=2+10Q−203Q2
2+10Q−203Q2=0,Q≥0
3Q2−2Q−40=0
D=(−2)2−4(3)(40)=484=222
Q=2(3)2±222=31±11
Q1=−310,Q2=4 Since Q≥0
If 0≤Q<4,dQd(Tπ)>0,Tπ increases.
If Q>4,dQd(Tπ)<0,Tπ decreases.
The function Tπ has a local maximum at Q=4.
Since the function Tπ has the only extremum for Q≥0, then the function Tπ has the absolute maximum at Q=4 for Q≥0.
c) Q=4
MR(4)=4−24=2
MC(4)=2−53(4)+203(4)2=2
Then at the point of the maximum profit (Q=4)
MR(4)=2=MC(2)
Comments
Leave a comment