1)x = ∬ D x d x d y ∬ D d x d y = ∫ 0 3 ∫ 2 x 2 − 3 x x 2 x d y d x ∫ 0 3 ∫ 2 x 2 − 3 x x 2 d y d x = ∫ 0 3 ( x 2 − 2 x 2 + 3 x ) x d x ∫ 0 3 ( x 2 − 2 x 2 + 3 x ) d x = 6.75 4.5 = 1.5 y = ∬ D y d x d y ∬ D d x d y = 0.5 ∗ ∫ 0 3 ( ( x 2 ) 2 − ( 2 x 2 − 3 x ) 2 ) d x 4.5 = 0.5 ∗ 16.2 4.5 = 1.8 x=\frac{\iint\limits_D xdxdy}{\iint\limits_D dxdy}=\frac{\int\limits_0^3\int\limits_{2x^2-3x}^{x^2}xdydx}{\int\limits_0^3\int\limits_{2x^2-3x}^{x^2}dydx}=\frac{\int\limits_0^3(x^2-2x^2+3x)xdx}{\int\limits_0^3(x^2-2x^2+3x)dx}=\frac{6.75}{4.5}=1.5\\
y=\frac{\iint\limits_D ydxdy}{\iint\limits_D dxdy}=\frac{0.5*\int_0^3 ((x^2)^2-(2x^2-3x)^2)dx}{4.5}=\frac{0.5*16.2}{4.5}=1.8 x = D ∬ d x d y D ∬ x d x d y = 0 ∫ 3 2 x 2 − 3 x ∫ x 2 d y d x 0 ∫ 3 2 x 2 − 3 x ∫ x 2 x d y d x = 0 ∫ 3 ( x 2 − 2 x 2 + 3 x ) d x 0 ∫ 3 ( x 2 − 2 x 2 + 3 x ) x d x = 4.5 6.75 = 1.5 y = D ∬ d x d y D ∬ y d x d y = 4.5 0.5 ∗ ∫ 0 3 (( x 2 ) 2 − ( 2 x 2 − 3 x ) 2 ) d x = 4.5 0.5 ∗ 16.2 = 1.8
2
x = ∬ D x d x d y ∬ D d x d y = ∫ 0 4 4 x x d x ∫ 0 4 4 x d x = 256 / 5 64 / 3 = 2.4 x=\frac{\iint\limits_D xdxdy}{\iint\limits_D dxdy}=\frac{\int\limits_0^44x\sqrt{x}dx}{\int\limits_0^44\sqrt{x}dx}=\frac{256/5}{64/3}=2.4 x = D ∬ d x d y D ∬ x d x d y = 0 ∫ 4 4 x d x 0 ∫ 4 4 x x d x = 64/3 256/5 = 2.4
due to symmetry about the x-axis, y = 0
3
x = ∬ D x d x d y ∬ D d x d y = ∫ 0 1 2 ∗ x ∗ 1 − x d x ∫ 0 1 2 ∗ 1 − x d x = 8 / 15 4 / 3 = 0.4 x=\frac{\iint\limits_D xdxdy}{\iint\limits_D dxdy}=\frac{\int_0^1 2*x*\sqrt{1-x}dx}{\int_0^1 2*\sqrt{1-x}dx}=\frac{8/15}{4/3}=0.4 x = D ∬ d x d y D ∬ x d x d y = ∫ 0 1 2 ∗ 1 − x d x ∫ 0 1 2 ∗ x ∗ 1 − x d x = 4/3 8/15 = 0.4
due to symmetry with respect to y = 1 , y = 1
4
this is a trianglex = ( 1 / 3 ) ∗ ( 2 + 8 + 8 ) = 6 y = ( 1 / 3 ) ∗ ( 5 − 1 + 17 ) = 7 x=(1/3)*(2+8+8)=6\\
y=(1/3)*(5 -1+17)=7 x = ( 1/3 ) ∗ ( 2 + 8 + 8 ) = 6 y = ( 1/3 ) ∗ ( 5 − 1 + 17 ) = 7
Comments