Answer to Question #196142 in Calculus for Angelo

Question #196142

Centroid of Plane Area


Locate the centroid of the region 𝑅 bounded by the given curves. Sketch the graph.


1.) 𝑅:𝑦=𝑥^2, 𝑦=2𝑥^2 −3𝑥

2.) 𝑅:𝑦^2=4𝑥, 𝑦=4, 𝑦−𝑎𝑥𝑖𝑠

3.) 𝑅:𝑥=2𝑦−𝑦^2, 𝑦−𝑎𝑥𝑖𝑠

4.) 𝑅:𝑦=2𝑥+1, 𝑥+𝑦=7, 𝑥=8


1
Expert's answer
2021-05-23T08:16:34-0400

1)x=DxdxdyDdxdy=032x23xx2xdydx032x23xx2dydx=03(x22x2+3x)xdx03(x22x2+3x)dx=6.754.5=1.5y=DydxdyDdxdy=0.503((x2)2(2x23x)2)dx4.5=0.516.24.5=1.8x=\frac{\iint\limits_D xdxdy}{\iint\limits_D dxdy}=\frac{\int\limits_0^3\int\limits_{2x^2-3x}^{x^2}xdydx}{\int\limits_0^3\int\limits_{2x^2-3x}^{x^2}dydx}=\frac{\int\limits_0^3(x^2-2x^2+3x)xdx}{\int\limits_0^3(x^2-2x^2+3x)dx}=\frac{6.75}{4.5}=1.5\\ y=\frac{\iint\limits_D ydxdy}{\iint\limits_D dxdy}=\frac{0.5*\int_0^3 ((x^2)^2-(2x^2-3x)^2)dx}{4.5}=\frac{0.5*16.2}{4.5}=1.8



2

x=DxdxdyDdxdy=044xxdx044xdx=256/564/3=2.4x=\frac{\iint\limits_D xdxdy}{\iint\limits_D dxdy}=\frac{\int\limits_0^44x\sqrt{x}dx}{\int\limits_0^44\sqrt{x}dx}=\frac{256/5}{64/3}=2.4

due to symmetry about the x-axis, y = 0


3

x=DxdxdyDdxdy=012x1xdx0121xdx=8/154/3=0.4x=\frac{\iint\limits_D xdxdy}{\iint\limits_D dxdy}=\frac{\int_0^1 2*x*\sqrt{1-x}dx}{\int_0^1 2*\sqrt{1-x}dx}=\frac{8/15}{4/3}=0.4

due to symmetry with respect to y = 1, y = 1


4

this is a triangle

x=(1/3)(2+8+8)=6y=(1/3)(51+17)=7x=(1/3)*(2+8+8)=6\\ y=(1/3)*(5 -1+17)=7


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment