Centroid of Plane Area
Locate the centroid of the region ๐ bounded by the given curves. Sketch the graph.
1.) ๐ :๐ฆ=๐ฅ^2, ๐ฆ=2๐ฅ^2 โ3๐ฅ
2.) ๐ :๐ฆ^2=4๐ฅ, ๐ฆ=4, ๐ฆโ๐๐ฅ๐๐
3.) ๐ :๐ฅ=2๐ฆโ๐ฆ^2, ๐ฆโ๐๐ฅ๐๐
4.) ๐ :๐ฆ=2๐ฅ+1, ๐ฅ+๐ฆ=7, ๐ฅ=8
1)"x=\\frac{\\iint\\limits_D xdxdy}{\\iint\\limits_D dxdy}=\\frac{\\int\\limits_0^3\\int\\limits_{2x^2-3x}^{x^2}xdydx}{\\int\\limits_0^3\\int\\limits_{2x^2-3x}^{x^2}dydx}=\\frac{\\int\\limits_0^3(x^2-2x^2+3x)xdx}{\\int\\limits_0^3(x^2-2x^2+3x)dx}=\\frac{6.75}{4.5}=1.5\\\\\ny=\\frac{\\iint\\limits_D ydxdy}{\\iint\\limits_D dxdy}=\\frac{0.5*\\int_0^3 ((x^2)^2-(2x^2-3x)^2)dx}{4.5}=\\frac{0.5*16.2}{4.5}=1.8"
2
"x=\\frac{\\iint\\limits_D xdxdy}{\\iint\\limits_D dxdy}=\\frac{\\int\\limits_0^44x\\sqrt{x}dx}{\\int\\limits_0^44\\sqrt{x}dx}=\\frac{256\/5}{64\/3}=2.4"
due to symmetry about the x-axis, y = 0
3
"x=\\frac{\\iint\\limits_D xdxdy}{\\iint\\limits_D dxdy}=\\frac{\\int_0^1 2*x*\\sqrt{1-x}dx}{\\int_0^1 2*\\sqrt{1-x}dx}=\\frac{8\/15}{4\/3}=0.4"
due to symmetry with respect to y = 1, y = 1
4
this is a triangle
"x=(1\/3)*(2+8+8)=6\\\\\ny=(1\/3)*(5 -1+17)=7"
Comments
Leave a comment