r2=6cos2(θ),r=2cosθ6cos2(θ)=2cosθ2cosθ(3cosθ−1)=0cosθ=0, θ=2πcosθ=31,θ=arccos(31)A1=21∫arccos(31)2π6cos2(θ)dθ=3∫arccos(31)2πcos2(θ)dθA2=21∫arccos(31)2π(2cosθ)2dθ=2∫2πarccos(31)cos2θdθA=A1−A2=3∫arccos(31)2πcos2(θ)dθ−2∫arccos(31)2πcos2θdθ=4sin(2θ)+2θ∣∣arccos(31)2πsin(arccosx)=1−x2sin(arccos(31))=1−91=3224sin(2θ)+2θ∣∣arccos(31)2π=4−2×322×31−2arccos(1/3)+24π/2=4−942+2csc−1(3)=2csc−1(3)−92∴A=2csc−1(3)−92.
Comments