r 2 = 6 cos 2 ( θ ) , r = 2 cos θ 6 cos 2 ( θ ) = 2 cos θ 2 cos θ ( 3 cos θ − 1 ) = 0 cos θ = 0 , θ = π 2 cos θ = 1 3 , θ = arccos ( 1 3 ) A 1 = 1 2 ∫ arccos ( 1 3 ) π 2 6 cos 2 ( θ ) d θ = 3 ∫ arccos ( 1 3 ) π 2 cos 2 ( θ ) d θ A 2 = 1 2 ∫ arccos ( 1 3 ) π 2 ( 2 cos θ ) 2 d θ = 2 ∫ π 2 arccos ( 1 3 ) cos 2 θ d θ A = A 1 − A 2 = 3 ∫ arccos ( 1 3 ) π 2 cos 2 ( θ ) d θ − 2 ∫ arccos ( 1 3 ) π 2 c o s 2 θ d θ = sin ( 2 θ ) + 2 θ 4 ∣ arccos ( 1 3 ) π 2 sin ( arccos x ) = 1 − x 2 sin ( arccos ( 1 3 ) ) = 1 − 1 9 = 2 2 3 sin ( 2 θ ) + 2 θ 4 ∣ arccos ( 1 3 ) π 2 = − 2 × 2 2 3 × 1 3 − 2 arccos ( 1 / 3 ) 4 + 2 π / 2 4 = − 4 2 9 + 2 csc − 1 ( 3 ) 4 = csc − 1 ( 3 ) 2 − 2 9 ∴ A = csc − 1 ( 3 ) 2 − 2 9 . \displaystyle
r^2 = 6\cos^2(\theta),\,\, r=2\cos{\theta}\\
6\cos^2(\theta) = 2\cos{\theta}\\
2\cos{\theta}(3\cos{\theta} - 1) = 0\\
\cos{\theta} = 0,\,\ \theta = \frac{\pi}{2}\\
\cos{\theta} = \frac{1}{3},\,\, \theta = \arccos\left(\frac{1}{3}\right)\\
\begin{aligned}
A_1 &= \frac{1}{2}\int_{\arccos\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} 6\cos^2(\theta)\,\, \mathrm{d}\theta
\\&= 3\int_{\arccos\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \cos^2(\theta)\,\, \mathrm{d}\theta
\end{aligned}\\
\begin{aligned}
A_2 &= \frac{1}{2} \int_{\arccos\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \left(2\cos{\theta}\right)^2 \,\, \mathrm{d}\theta
\\&= 2\int_{\frac{\pi}{2}}^{\arccos\left(\frac{1}{3}\right)} \cos^2{\theta} \,\, \mathrm{d}\theta
\end{aligned}\\
\begin{aligned}
A &= A_1 - A_2 = 3\int_{\arccos\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \cos^2(\theta)\,\, \mathrm{d}\theta - 2\int_{\arccos\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} cos^2{\theta} \,\, \mathrm{d}\theta
\\&= \frac{\sin(2\theta) + 2\theta}{4}\biggr\vert_{\arccos\left(\frac{1}{3}\right)}^{\frac{\pi}{2}}
\end{aligned}\\
\sin\left(\arccos{x}\right) = \sqrt{1 - x^2}\\
\sin\left(\arccos\left(\frac{1}{3}\right)\right) = \sqrt{1 - \frac{1}{9}} = \frac{2\sqrt{2}}{3}\\
\begin{aligned}
\frac{\sin(2\theta) + 2\theta}{4}\biggr\vert_{\arccos\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} &= \frac{-2\times \frac{2\sqrt{2}}{3} \times \frac{1}{3} - 2\arccos(1/3)}{4} + 2\frac{\pi/2}{4}
\\&= \frac{-\frac{4\sqrt{2}}{9} + 2\textrm{csc}^{-1}(3)}{4} = \frac{\textrm{csc}^{-1}(3)}{2} - \frac{\sqrt{2}}{9}
\end{aligned}\\
\therefore A = \frac{\textrm{csc}^{-1}(3)}{2} - \frac{\sqrt{2}}{9}. r 2 = 6 cos 2 ( θ ) , r = 2 cos θ 6 cos 2 ( θ ) = 2 cos θ 2 cos θ ( 3 cos θ − 1 ) = 0 cos θ = 0 , θ = 2 π cos θ = 3 1 , θ = arccos ( 3 1 ) A 1 = 2 1 ∫ a r c c o s ( 3 1 ) 2 π 6 cos 2 ( θ ) d θ = 3 ∫ a r c c o s ( 3 1 ) 2 π cos 2 ( θ ) d θ A 2 = 2 1 ∫ a r c c o s ( 3 1 ) 2 π ( 2 cos θ ) 2 d θ = 2 ∫ 2 π a r c c o s ( 3 1 ) cos 2 θ d θ A = A 1 − A 2 = 3 ∫ a r c c o s ( 3 1 ) 2 π cos 2 ( θ ) d θ − 2 ∫ a r c c o s ( 3 1 ) 2 π co s 2 θ d θ = 4 sin ( 2 θ ) + 2 θ ∣ ∣ a r c c o s ( 3 1 ) 2 π sin ( arccos x ) = 1 − x 2 sin ( arccos ( 3 1 ) ) = 1 − 9 1 = 3 2 2 4 sin ( 2 θ ) + 2 θ ∣ ∣ a r c c o s ( 3 1 ) 2 π = 4 − 2 × 3 2 2 × 3 1 − 2 arccos ( 1/3 ) + 2 4 π /2 = 4 − 9 4 2 + 2 csc − 1 ( 3 ) = 2 csc − 1 ( 3 ) − 9 2 ∴ A = 2 csc − 1 ( 3 ) − 9 2 .
Comments