Question #195218

Check the local inevitability of the function f defined by f(x,y)=(x²-y²,2xy) at (1,-1). Find a domain for the function f in which f is invertible. 


1
Expert's answer
2021-05-24T11:23:22-0400

Given, f(x,y)=(x2y2,2xy)f(x,y)=(x^2-y^2,2xy)


Here, u=x2y2,v=2xyu=x^2-y^2,v=2xy


Jf(x,y)=dudxdudydvdxdvdy=2x2y2y2x=4x2+4y2J|f(x,y)|=\begin{vmatrix} \dfrac{du}{dx} & \dfrac{du}{dy}\\\\\dfrac{dv}{dx}&\dfrac{dv}{dy}\end{vmatrix} =\begin{vmatrix} 2x& -2y\\2y&2x\end{vmatrix}=4x^2+4y^2


Jf(1,1)=4(1)2+4(1)2=4+4=8\Rightarrow J|f(1,-1)|=4(1)^2+4(-1)^2=4+4=8


Hence,Jf(1,1)0,Hence, J|f(1,-1)|\neq 0, So F is invertible at (1,-1).


As 4(x2+y2)>0,4(x^2+y^2)>0, So The domain for which f is invertible is all Real numbers R.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS