Given, f(x,y)=(x2−y2,2xy)
Here, u=x2−y2,v=2xy
J∣f(x,y)∣=∣∣dxdudxdvdydudydv∣∣=∣∣2x2y−2y2x∣∣=4x2+4y2
⇒J∣f(1,−1)∣=4(1)2+4(−1)2=4+4=8
Hence,J∣f(1,−1)∣=0, So F is invertible at (1,-1).
As 4(x2+y2)>0, So The domain for which f is invertible is all Real numbers R.
Comments