Find the volume of the solid generated when the region enclosed by
y = √(x + 3), y = √(2x + 1), x = 0 is revolved about the x-axis.
"\\displaystyle\n\\textsf{Point of Intersection:}\\\\\n\\sqrt{x + 3} = \\sqrt{2x + 1}\\\\\nx + 3 = 2x + 1, x = 3 - 1 = 2\\\\\n\\begin{aligned}\nV &= \\pi \\int_0^2 (x + 3 - (2x + 1))\\,\\, \\mathrm{d}x\n\\\\&= \\pi \\int_0^2 (2 - x)\\,\\, \\mathrm{d}x\n\\\\&= \\pi\\left(2x - \\frac{x^2}{2}\\right)\\biggr\\vert_0^2\n\\\\&= \\pi(2) = 2\\pi\n\\end{aligned}"
Comments
Leave a comment