1/x( √4+x^2)^3 using substitution x = 2 tan ϴ
Substitution
"dx=\\dfrac{2d\\theta}{\\cos^2\\theta }"
"\\sqrt{4+x^2 }=\\sqrt{4+(2\\tan \\theta)^2 }=\\dfrac{2}{\\cos\\theta }"
"\\int\\dfrac{dx}{x(\\sqrt{4+x^2})^3}=\\int\\dfrac{2d\\theta}{\\cos^2\\theta (2\\tan \\theta )(\\dfrac{2}{\\cos\\theta })^3}"
"=\\int\\dfrac{d\\theta}{8\\sin \\theta }"
"\\cos \\theta=u"
"\\sin^2 \\theta =1-u^2"
"\\int\\dfrac{d\\theta}{8\\sin \\theta }=-\\int\\dfrac{ du}{8(1-u^2)}"
"=\\dfrac{1}{16}\\ln(1-\\cos\\theta)-\\dfrac{1}{16}\\ln(1+\\cos\\theta)+C"
"=\\dfrac{1}{16}\\ln(1-\\cos(\\arctan\\dfrac{x}{2}))"
"-\\dfrac{1}{16}\\ln(1+\\cos(\\arctan\\dfrac{x}{2}))+C"
Comments
Leave a comment