Question #194456

1/x( √4+x^2)^3 using substitution x = 2 tan ϴ

1
Expert's answer
2021-05-19T16:38:09-0400

Substitution


x=2tanθx=2\tan \theta

dx=2dθcos2θdx=\dfrac{2d\theta}{\cos^2\theta }

4+x2=4+(2tanθ)2=2cosθ\sqrt{4+x^2 }=\sqrt{4+(2\tan \theta)^2 }=\dfrac{2}{\cos\theta }

dxx(4+x2)3=2dθcos2θ(2tanθ)(2cosθ)3\int\dfrac{dx}{x(\sqrt{4+x^2})^3}=\int\dfrac{2d\theta}{\cos^2\theta (2\tan \theta )(\dfrac{2}{\cos\theta })^3}

=dθ8sinθ=\int\dfrac{d\theta}{8\sin \theta }

cosθ=u\cos \theta=u


du=sinθdθdu=-\sin \theta d\theta

sin2θ=1u2\sin^2 \theta =1-u^2

dθ8sinθ=du8(1u2)\int\dfrac{d\theta}{8\sin \theta }=-\int\dfrac{ du}{8(1-u^2)}


=du16(1u)du16(1+u)=-\int\dfrac{ du}{16(1-u)}-\int\dfrac{ du}{16(1+u)}


=116ln1u116ln1+u+C=\dfrac{1}{16}\ln|1-u|-\dfrac{1}{16}\ln|1+u|+C

=116ln(1cosθ)116ln(1+cosθ)+C=\dfrac{1}{16}\ln(1-\cos\theta)-\dfrac{1}{16}\ln(1+\cos\theta)+C

=116ln(1cos(arctanx2))=\dfrac{1}{16}\ln(1-\cos(\arctan\dfrac{x}{2}))

116ln(1+cos(arctanx2))+C-\dfrac{1}{16}\ln(1+\cos(\arctan\dfrac{x}{2}))+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS