Question #195209

Find the third Taylor polynomial of the function f(x,y)= =1+5xy+3²y at (1,2)


1
Expert's answer
2021-05-19T18:15:06-0400

Given f(x,y)=15xy+32y=15xy+9yf(x,y)=1-5xy+3^2y=1-5xy+9y


f(1,2)=15(1)(2)+9(2)=110+18=9f(1,2)=1-5(1)(2)+9(2)=1-10+18=9


fx=5yfx(1,2)=10fy=5x+9fy(1,2)=5(1)+9=4fxx=0fyy=0f_x=-5y\\ f_x(1,2)=-10 \\ f_y=-5x+9 \\ f_y(1,2)=-5(1)+9=4 \\ f_{xx}=0\\ f_{yy}=0 \\



f(x,y)=f(a,b)+(x1)fx(1,2)+(y2)fy+fxx×(x1)22!+....f(x,y)=f(a,b)+(x-1)f_x(1,2)+(y-2)f_y+\dfrac{f_{xx}\times (x-1)^2}{2!}+....


=9+(x1)×10+(y2)×4+0+...=910x+10+4y8=4y10x+11=9+(x-1)\times -10+(y-2)\times 4+0+...\\[9pt]=9-10x+10+4y-8\\[9pt]=4y-10x+11


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS