Find angle between the tangents at t = 1 and t = 2 to the curve πΜ = π‘2 πΜ + (π‘3 β 2π‘) πΜ + (3π‘ β 4) πΜ .
"r'(t)=2ti+(3t^2-2)j+3k"
r'(1)=2i+ 1j+3k
r'(2)=4i+10j+3k
cos(r'(1),r'(2))=(2*4+1*10+3*3)/"(\\sqrt{r'(1)}*\\sqrt{r'(2)})" =27/"(\\sqrt{14}*\\sqrt{125})" =27/"(5\\sqrt{70})" angle=arcos(27/"(5\\sqrt{70}))" )
Comments
Leave a comment