Question #195129

A website for bed and breakfast inns gets approximately seven visitors per minute.

Suppose the number of website visitors per minute.

a. Compute the probability of no website visitors in a one-minute period. b. Compute the probability of two or more website visitors in a one-minute period. c. Compute the probability of one or more website visitors in a 30-second period. d. Compute the probability of five or more website visitors in a one-minute period.


1
Expert's answer
2021-05-24T01:02:13-0400

Solution:

λ=7\lambda=7 per min=7/60=7/ 60 per sec

(a) P(X=0)=e7700!=e7=0.00091P(X=0)=e^{-7} \frac{7^0}{0!}=e^{-7}=0.00091

(b) P(X2)=1P(X=0)P(X=1)P(X=2)P(X\ge2)=1-P(X=0)-P(X=1)-P(X=2)

=1e7700!e7711!e7722!=0.97036=1-e^{-7} \frac{7^0}{0!}-e^{-7} \frac{7^1}{1!}-e^{-7} \frac{7^2}{2!} \\=0.97036

(c) λ\lambda for 30 sec period=7(30/60)=3.5=7(30/60)=3.5

P(X1)=1P(X=0)P(X=1)=1e3.53.500!e3.53.511!=0.8641P(X\ge1)=1-P(X=0)-P(X=1) \\=1-e^{-3.5} \frac{3.5^0}{0!}-e^{-3.5} \frac{3.5^1}{1!} \\=0.8641

(d) P(X5)=1P(X=0)P(X=1)P(X=2)P(X=3)P(X=4)P(X=5)P(X\ge5)=1-P(X=0)-P(X=1)-P(X=2)-P(X=3)-P(X=4)-P(X=5)

=1e7700!e7711!e7722!e7733!e7744!e7755!=1-e^{-7} \frac{7^0}{0!}-e^{-7} \frac{7^1}{1!}-e^{-7} \frac{7^2}{2!}-e^{-7} \frac{7^3}{3!}-e^{-7} \frac{7^4}{4!}-e^{-7} \frac{7^5}{5!}

=0.69929=0.69929


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS