Given, f(x)=sinxsink
so
f′(x)=cosxsink⇒f′(0)=cos0sink=sinkf′′(x)=−sinxsink⇒f′′(0)=0f′′′(x)=−cosxsink⇒f′′′(0)=−sink
Maclaurins expansion is given by-
f(x)=f(0)+xf′(0)+2!x2f′′(0)+3!x3f′′′(0)...f(x)=0+x(sink)+2!x2×0+3!x3(−sink)
The coefficient of x in the expansion is sink.
Comments