The coefficient of x in the Maclaurin's expansion of sinx sink is
Given, "f(x)=sinx sink"
so
"f'(x)=cosx sink\\Rightarrow f'(0)=cos0 sink=sink\n\\\\\nf''(x)=-sin xsink\\Rightarrow f''(0)=0\n\\\\\nf'''(x)=-cosxsink\\Rightarrow f'''(0)=-sink"
Maclaurins expansion is given by-
"f(x)=f(0)+xf'(0)+\\dfrac{x^2}{2!}f''(0)+\\dfrac{x^3}{3!} f'''(0)...\n\n\\\\[9pt]\n\nf(x)=0+x(sink)+\\dfrac{x^2}{2!}\\times 0+\\dfrac{x^3}{3!} (-sink)"
The coefficient of x in the expansion is sink.
Comments
Leave a comment