(a) Give, x = t , y = t 2 , z = t 3 x=t,y=t^2,z=t^3 x = t , y = t 2 , z = t 3
The points corresponds to t=1
d x = d t , d y = 2 t d t , d z = 3 t 2 d t ∫ A ⃗ . d r ⃗ = ∫ ( 3 x 2 + 6 y ) d x − 14 y z d y + 20 x z 2 d z = ∫ 0 1 ( 3 t 2 + 6 t 2 ) d t − 14 t 5 ( 2 t d t ) + 20 t 7 ( 3 t 2 d t ) = 5 dx=dt,dy=2tdt,dz=3t^2dt
\\[9pt]
\int \vec{A}.\vec{dr}=\int(3x^2+6y)dx-14yzdy+20xz^2dz
\\[9pt]
=\int_0^1(3t^2+6t^2)dt-14t^5(2tdt)+20t^7(3t^2dt)
\\[9pt]
=5 d x = d t , d y = 2 t d t , d z = 3 t 2 d t ∫ A . d r = ∫ ( 3 x 2 + 6 y ) d x − 14 yz d y + 20 x z 2 d z = ∫ 0 1 ( 3 t 2 + 6 t 2 ) d t − 14 t 5 ( 2 t d t ) + 20 t 7 ( 3 t 2 d t ) = 5
(b)
∫ ( 0 , 0 , 0 , ) ( 1 , 0 , 0 ) A ⃗ . d r ⃗ = ∫ 0 1 ( 3 x 2 + 6 y ) d x − ∫ 0 0 14 y z d y + ∫ 0 0 20 x z 2 d z = x 3 + 6 x y ∣ 0 1 = 1 \int_{(0,0,0,)}^{(1,0,0)} \vec{A}.\vec{dr}=\int_0^1(3x^2+6y)dx-\int_0^014yzdy+\int_0^020xz^2dz
\\[9pt]=x^3+6xy|_0^1=1 ∫ ( 0 , 0 , 0 , ) ( 1 , 0 , 0 ) A . d r = ∫ 0 1 ( 3 x 2 + 6 y ) d x − ∫ 0 0 14 yz d y + ∫ 0 0 20 x z 2 d z = x 3 + 6 x y ∣ 0 1 = 1
∫ ( 1 , 1 , 0 , ) ( 1 , 1 , 1 ) A ⃗ . d r ⃗ = ∫ 1 1 ( 3 x 2 + 6 y ) d x − ∫ 1 1 14 y z d y + ∫ 0 1 20 x z 2 d z = 20 x z 3 3 ∣ 0 1 = 0 \int_{(1,1,0,)}^{(1,1,1)} \vec{A}.\vec{dr}=\int_1^1(3x^2+6y)dx-\int_1^114yzdy+\int_0^120xz^2dz
\\[9pt]=20\dfrac{xz^3}{3}|_0^1=0 ∫ ( 1 , 1 , 0 , ) ( 1 , 1 , 1 ) A . d r = ∫ 1 1 ( 3 x 2 + 6 y ) d x − ∫ 1 1 14 yz d y + ∫ 0 1 20 x z 2 d z = 20 3 x z 3 ∣ 0 1 = 0
(c)
∫ ( 0 , 0 , 0 , ) ( 1 , 1 , 1 ) A ⃗ . d r ⃗ = ∫ 0 1 ( 3 x 2 + 6 y ) d x − ∫ 0 1 14 y z d y + ∫ 0 1 20 x z 2 d z = x 3 + 6 x y ∣ 0 1 − 7 y 2 z ∣ 0 1 + 20 x z 3 3 ∣ 0 1 = 1 + 6 − 7 + 20 3 = 20 3 \int_{(0,0,0,)}^{(1,1,1)} \vec{A}.\vec{dr}=\int_0^1(3x^2+6y)dx-\int_0^114yzdy+\int_0^120xz^2dz
\\[9pt]=x^3+6xy|_0^1-7y^2z|_0^1+\dfrac{20xz^3}{3}|_0^1\\[9pt]=1+6-7+\dfrac{20}{3}=\dfrac{20}{3} ∫ ( 0 , 0 , 0 , ) ( 1 , 1 , 1 ) A . d r = ∫ 0 1 ( 3 x 2 + 6 y ) d x − ∫ 0 1 14 yz d y + ∫ 0 1 20 x z 2 d z = x 3 + 6 x y ∣ 0 1 − 7 y 2 z ∣ 0 1 + 3 20 x z 3 ∣ 0 1 = 1 + 6 − 7 + 3 20 = 3 20
Comments