If π΄ = 3π₯ 2 + 6π¦ π β 14π¦π§π + 20π₯π§ 2π, οΏ½οΏ½Χ¬ οΏ½οΏ½evaluate π΄ β ππ from (0,0,0) to (1,1,1) along the following path C: π. π₯ = π‘, π¦ = π‘ 2 , π§ = π‘ 3 b. the straight lines from (0,0,0) to (1,0,0) and then to (1,1,0) and the to (1, 1, 1) c. the straight line joining (0,0,0) to (1,1,1).
(a) Give, "x=t,y=t^2,z=t^3"
The points corresponds to t=1
"dx=dt,dy=2tdt,dz=3t^2dt\n\n\n\\\\[9pt]\n\\int \\vec{A}.\\vec{dr}=\\int(3x^2+6y)dx-14yzdy+20xz^2dz\n\\\\[9pt]\n\n\n =\\int_0^1(3t^2+6t^2)dt-14t^5(2tdt)+20t^7(3t^2dt)\n\\\\[9pt]\n =5"
(b)
"\\int_{(0,0,0,)}^{(1,0,0)} \\vec{A}.\\vec{dr}=\\int_0^1(3x^2+6y)dx-\\int_0^014yzdy+\\int_0^020xz^2dz\n \\\\[9pt]=x^3+6xy|_0^1=1"
"\\int_{(1,1,0,)}^{(1,1,1)} \\vec{A}.\\vec{dr}=\\int_1^1(3x^2+6y)dx-\\int_1^114yzdy+\\int_0^120xz^2dz\n \\\\[9pt]=20\\dfrac{xz^3}{3}|_0^1=0"
(c)
"\\int_{(0,0,0,)}^{(1,1,1)} \\vec{A}.\\vec{dr}=\\int_0^1(3x^2+6y)dx-\\int_0^114yzdy+\\int_0^120xz^2dz\n\n \\\\[9pt]=x^3+6xy|_0^1-7y^2z|_0^1+\\dfrac{20xz^3}{3}|_0^1\\\\[9pt]=1+6-7+\\dfrac{20}{3}=\\dfrac{20}{3}"
Comments
Leave a comment