Let's find velocity:
v ( t ) = ∫ a ( t ) d t = ∫ 12 cos 2 t d t i → − ∫ 8 sin 2 t d t j → + ∫ 16 t d t k → = ( 6 sin 2 t + C 1 ) i → + ( 4 cos 2 t + C 2 ) j → + ( 8 t 2 + C 3 ) k → v(t) = \int {a(t)dt} = \int {12\cos 2t} dt\overrightarrow i - \int {8\sin 2t} dt\overrightarrow j + \int {16tdt} \overrightarrow k = \left( {6\sin 2t + {C_1}} \right)\overrightarrow i + \left( {4\cos 2t + {C_2}} \right)\overrightarrow j + \left( {8{t^2} + {C_3}} \right)\overrightarrow k v ( t ) = ∫ a ( t ) d t = ∫ 12 cos 2 t d t i − ∫ 8 sin 2 t d t j + ∫ 16 t d t k = ( 6 sin 2 t + C 1 ) i + ( 4 cos 2 t + C 2 ) j + ( 8 t 2 + C 3 ) k
By condition, v(0)=0. Then
6 sin 0 + C 1 = 0 ⇒ C 1 = 0 6\sin 0 + {C_1} = 0 \Rightarrow {C_1} = 0 6 sin 0 + C 1 = 0 ⇒ C 1 = 0
4 cos 0 + C 2 = 0 ⇒ 4 + C 2 = 0 ⇒ C 2 = − 4 4\cos 0 + {C_2} = 0 \Rightarrow 4 + {C_2} = 0 \Rightarrow {C_2} = - 4 4 cos 0 + C 2 = 0 ⇒ 4 + C 2 = 0 ⇒ C 2 = − 4
0 + C 3 = 0 ⇒ C 3 = 0 0 + {C_3} = 0 \Rightarrow {C_3} = 0 0 + C 3 = 0 ⇒ C 3 = 0
Then
v ( t ) = 6 sin 2 t i → + ( 4 cos 2 t − 4 ) j → + 8 t 2 k → v(t) = 6\sin 2t\overrightarrow i + \left( {4\cos 2t - 4} \right)\overrightarrow j + 8{t^2}\overrightarrow k v ( t ) = 6 sin 2 t i + ( 4 cos 2 t − 4 ) j + 8 t 2 k
Let's find displacement:
r ( t ) = ∫ v ( t ) d t = ∫ 6 sin 2 t d t i → + ∫ ( 4 cos 2 t − 4 ) d t j → + ∫ 8 t 2 d t k → = ( − 3 cos 2 t + C 4 ) i → + ( 2 sin 2 t − 4 t + C 5 ) j → + ( 8 3 t 3 + C 6 ) k → r(t) = \int {v(t)dt} = \int {6\sin 2t} dt\overrightarrow i + \int {\left( {4\cos 2t - 4} \right)dt} \overrightarrow j + \int {8{t^2}dt} \overrightarrow k = ( - 3\cos 2t + {C_4})\overrightarrow i + \left( {2\sin 2t - 4t + {C_5}} \right)\overrightarrow j + \left( {\frac{8}{3}{t^3} + {C_6}} \right)\overrightarrow k r ( t ) = ∫ v ( t ) d t = ∫ 6 sin 2 t d t i + ∫ ( 4 cos 2 t − 4 ) d t j + ∫ 8 t 2 d t k = ( − 3 cos 2 t + C 4 ) i + ( 2 sin 2 t − 4 t + C 5 ) j + ( 3 8 t 3 + C 6 ) k
By condition, r(0)=0. Then
− 3 cos 0 + C 4 = 0 ⇒ − 3 + C 4 = 0 ⇒ C 4 = 3 - 3\cos 0 + {C_4} = 0 \Rightarrow - 3 + {C_4} = 0 \Rightarrow {C_4} = 3 − 3 cos 0 + C 4 = 0 ⇒ − 3 + C 4 = 0 ⇒ C 4 = 3
2 sin 0 − 0 + C 5 = 0 ⇒ C 5 = 0 2\sin 0 - 0 + {C_5} = 0 \Rightarrow {C_5} = 0 2 sin 0 − 0 + C 5 = 0 ⇒ C 5 = 0
0 + C 6 ⇒ C 6 = 0 0 + {C_6} \Rightarrow {C_6} = 0 0 + C 6 ⇒ C 6 = 0
Then
r ( t ) = ( − 3 cos 2 t + 3 ) i → + ( 2 sin 2 t − 4 t ) j → + 8 3 t 3 k → r(t) = ( - 3\cos 2t + 3)\overrightarrow i + \left( {2\sin 2t - 4t} \right)\overrightarrow j + \frac{8}{3}{t^3}\overrightarrow k r ( t ) = ( − 3 cos 2 t + 3 ) i + ( 2 sin 2 t − 4 t ) j + 3 8 t 3 k
Answer: v ( t ) = 6 sin 2 t i → + ( 4 cos 2 t − 4 ) j → + 8 t 2 k → v(t) = 6\sin 2t\overrightarrow i + \left( {4\cos 2t - 4} \right)\overrightarrow j + 8{t^2}\overrightarrow k v ( t ) = 6 sin 2 t i + ( 4 cos 2 t − 4 ) j + 8 t 2 k , r ( t ) = ( − 3 cos 2 t + 3 ) i → + ( 2 sin 2 t − 4 t ) j → + 8 3 t 3 k → r(t) = ( - 3\cos 2t + 3)\overrightarrow i + \left( {2\sin 2t - 4t} \right)\overrightarrow j + \frac{8}{3}{t^3}\overrightarrow k r ( t ) = ( − 3 cos 2 t + 3 ) i + ( 2 sin 2 t − 4 t ) j + 3 8 t 3 k
Comments
Leave a comment