Answer to Question #190767 in Calculus for Rocky Valmores

Question #190767

The acceleration of a particle at any time t ≥ 0 is given by 𝑎 = 𝑑𝑣 𝑑𝑡 = 12 cos 2𝑡 𝑑𝑡𝑖 − 8 sin 2𝑡 𝑗 + 16 𝑡 𝑘 , if the velocity v and displacement r are zero at t=0, find 𝑣 𝑎𝑛𝑑 𝑟 at any time.


1
Expert's answer
2021-05-11T07:29:32-0400

Let's find velocity:

v(t)=a(t)dt=12cos2tdti8sin2tdtj+16tdtk=(6sin2t+C1)i+(4cos2t+C2)j+(8t2+C3)kv(t) = \int {a(t)dt} = \int {12\cos 2t} dt\overrightarrow i - \int {8\sin 2t} dt\overrightarrow j + \int {16tdt} \overrightarrow k = \left( {6\sin 2t + {C_1}} \right)\overrightarrow i + \left( {4\cos 2t + {C_2}} \right)\overrightarrow j + \left( {8{t^2} + {C_3}} \right)\overrightarrow k

By condition, v(0)=0. Then

6sin0+C1=0C1=06\sin 0 + {C_1} = 0 \Rightarrow {C_1} = 0

4cos0+C2=04+C2=0C2=44\cos 0 + {C_2} = 0 \Rightarrow 4 + {C_2} = 0 \Rightarrow {C_2} = - 4

0+C3=0C3=00 + {C_3} = 0 \Rightarrow {C_3} = 0

Then

v(t)=6sin2ti+(4cos2t4)j+8t2kv(t) = 6\sin 2t\overrightarrow i + \left( {4\cos 2t - 4} \right)\overrightarrow j + 8{t^2}\overrightarrow k

Let's find displacement:

r(t)=v(t)dt=6sin2tdti+(4cos2t4)dtj+8t2dtk=(3cos2t+C4)i+(2sin2t4t+C5)j+(83t3+C6)kr(t) = \int {v(t)dt} = \int {6\sin 2t} dt\overrightarrow i + \int {\left( {4\cos 2t - 4} \right)dt} \overrightarrow j + \int {8{t^2}dt} \overrightarrow k = ( - 3\cos 2t + {C_4})\overrightarrow i + \left( {2\sin 2t - 4t + {C_5}} \right)\overrightarrow j + \left( {\frac{8}{3}{t^3} + {C_6}} \right)\overrightarrow k

By condition, r(0)=0. Then

3cos0+C4=03+C4=0C4=3- 3\cos 0 + {C_4} = 0 \Rightarrow - 3 + {C_4} = 0 \Rightarrow {C_4} = 3

2sin00+C5=0C5=02\sin 0 - 0 + {C_5} = 0 \Rightarrow {C_5} = 0

0+C6C6=00 + {C_6} \Rightarrow {C_6} = 0

Then

r(t)=(3cos2t+3)i+(2sin2t4t)j+83t3kr(t) = ( - 3\cos 2t + 3)\overrightarrow i + \left( {2\sin 2t - 4t} \right)\overrightarrow j + \frac{8}{3}{t^3}\overrightarrow k

Answer: v(t)=6sin2ti+(4cos2t4)j+8t2kv(t) = 6\sin 2t\overrightarrow i + \left( {4\cos 2t - 4} \right)\overrightarrow j + 8{t^2}\overrightarrow k , r(t)=(3cos2t+3)i+(2sin2t4t)j+83t3kr(t) = ( - 3\cos 2t + 3)\overrightarrow i + \left( {2\sin 2t - 4t} \right)\overrightarrow j + \frac{8}{3}{t^3}\overrightarrow k


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment