The acceleration of a particle at any time t β₯ 0 is given by π = ππ£ ππ‘ = 12 cos 2π‘ ππ‘π β 8 sin 2π‘ π + 16 π‘ π , if the velocity v and displacement r are zero at t=0, find π£ πππ π at any time.
Let's find velocity:
"v(t) = \\int {a(t)dt} = \\int {12\\cos 2t} dt\\overrightarrow i - \\int {8\\sin 2t} dt\\overrightarrow j + \\int {16tdt} \\overrightarrow k = \\left( {6\\sin 2t + {C_1}} \\right)\\overrightarrow i + \\left( {4\\cos 2t + {C_2}} \\right)\\overrightarrow j + \\left( {8{t^2} + {C_3}} \\right)\\overrightarrow k"
By condition, v(0)=0. Then
"6\\sin 0 + {C_1} = 0 \\Rightarrow {C_1} = 0"
"4\\cos 0 + {C_2} = 0 \\Rightarrow 4 + {C_2} = 0 \\Rightarrow {C_2} = - 4"
"0 + {C_3} = 0 \\Rightarrow {C_3} = 0"
Then
"v(t) = 6\\sin 2t\\overrightarrow i + \\left( {4\\cos 2t - 4} \\right)\\overrightarrow j + 8{t^2}\\overrightarrow k"
Let's find displacement:
"r(t) = \\int {v(t)dt} = \\int {6\\sin 2t} dt\\overrightarrow i + \\int {\\left( {4\\cos 2t - 4} \\right)dt} \\overrightarrow j + \\int {8{t^2}dt} \\overrightarrow k = ( - 3\\cos 2t + {C_4})\\overrightarrow i + \\left( {2\\sin 2t - 4t + {C_5}} \\right)\\overrightarrow j + \\left( {\\frac{8}{3}{t^3} + {C_6}} \\right)\\overrightarrow k"
By condition, r(0)=0. Then
"- 3\\cos 0 + {C_4} = 0 \\Rightarrow - 3 + {C_4} = 0 \\Rightarrow {C_4} = 3"
"2\\sin 0 - 0 + {C_5} = 0 \\Rightarrow {C_5} = 0"
"0 + {C_6} \\Rightarrow {C_6} = 0"
Then
"r(t) = ( - 3\\cos 2t + 3)\\overrightarrow i + \\left( {2\\sin 2t - 4t} \\right)\\overrightarrow j + \\frac{8}{3}{t^3}\\overrightarrow k"
Answer: "v(t) = 6\\sin 2t\\overrightarrow i + \\left( {4\\cos 2t - 4} \\right)\\overrightarrow j + 8{t^2}\\overrightarrow k" , "r(t) = ( - 3\\cos 2t + 3)\\overrightarrow i + \\left( {2\\sin 2t - 4t} \\right)\\overrightarrow j + \\frac{8}{3}{t^3}\\overrightarrow k"
Comments
Leave a comment