Chain rule of differentiation:
dxdy=dudydxdu
Example: f(x)=sin(3x2+x)
It looks like the outside function is the sine and the inside function is 3x2+x. The derivative is then.
f′(x)=cos(3x2+x)(6x+1)
=(6x+1)cos(3x2+x)
Product Rule of Differentiation:
dxd(uv)=udxdv+vdxdu
Example : f(x)=xsinx
f′(x)=xdxd(sinx)+sinxdxd(x)
f′(x)=xcosx+sinx.
Quotient Rule of differentiation:
dxdy=v2vdxdu−udxdv
Example: f(x)=xsinx
f′(x)=x2xdxd(sinx)−sinxdxd(x)
f′(x)=x2xcosx−sinx
Comments