1. Differentiate the following functions:
(a) y = x^3 cos
(b) y = e^x/sin 2x
a). y=x3 cos x
dydx=f′g+fg′{dy\over dx }=f'g + fg'dxdy=f′g+fg′
Let f = x3 ⟹ \implies⟹ f'=3x2
Let g=cos(x) ⟹ \implies⟹ g' =- sin(x)
∴\therefore∴ dydx{dy\over dx}dxdy = 3x2cos(x)-x3sin(x)
b). y=exsin(2x)y= {e^x\over sin(2x)}y=sin(2x)ex
dydx={dy\over dx }=dxdy= f′g−fg′g2{f'g - fg'\over g^2}g2f′g−fg′
let f=exf = e^xf=ex ⟹ \implies⟹ f′=exf' = e^xf′=ex
Let g=sin(2x)g = sin(2x)g=sin(2x) ⟹ \implies⟹ g′=2cos(2x)g' = 2 cos(2x)g′=2cos(2x)
∴\therefore∴ dydx={dy\over dx}=dxdy= exsin(2x)−ex2cos(2x)sin22x{e^x sin (2x) - e^x 2cos(2x)\over sin ^2 2x}sin22xexsin(2x)−ex2cos(2x)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment