Answer to Question #188151 in Calculus for VPM

Question #188151

1. Differentiate the following functions:

(a) y = x^3 cos


(b) y = e^x/sin 2x


1
Expert's answer
2021-05-11T13:58:15-0400

a). y=x3 cos x

dydx=fg+fg{dy\over dx }=f'g + fg'

Let f = x3     \implies f'=3x2

Let g=cos(x)     \implies g' =- sin(x)

\therefore dydx{dy\over dx} = 3x2cos(x)-x3sin(x)

b). y=exsin(2x)y= {e^x\over sin(2x)}

dydx={dy\over dx }= fgfgg2{f'g - fg'\over g^2}

let f=exf = e^x     \implies f=exf' = e^x

Let g=sin(2x)g = sin(2x)     \implies g=2cos(2x)g' = 2 cos(2x)

\therefore dydx={dy\over dx}= exsin(2x)ex2cos(2x)sin22x{e^x sin (2x) - e^x 2cos(2x)\over sin ^2 2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment