2. Find the gradient of the curve y =4 sin 2x + 3cos 1/2x, at x = TT/3
Solution:
"y=4\\sin 2x+3\\cos (1\/2\\ x)"
On differentiating both sides w.r.t "x",
"\\frac{dy}{dx}=4\\cos 2x.(2)+3(-\\sin (\\frac12 \\ x)).(\\frac12)\n\\\\=8\\cos 2x-\\frac32 (\\sin \\frac12x)"
Put "x=\\frac{\\pi}3"
"\\frac{dy}{dx}=8\\cos 2(\\frac{\\pi}3)-\\frac32 (\\sin \\frac12.\\frac{\\pi}3)\n\\\\=8\\cos (\\frac{2\\pi}3)-\\frac32 (\\sin \\frac{\\pi}6)\n\\\\=8(\\frac{-1}{2})-\\frac{3}{2}(\\frac{1}{2})\n\\\\=-4.75"
So, the gradient of "y" at "x=\\frac{\\pi}3" is "-4.75".
Comments
Leave a comment