Given,
functionf(x,y)=x2+y2xy,(x,y)=(0,0)f(x,y)=0,(x,y)=(0,0)For partial derivative,fx(0,0)=limh→0hf(h,0)−f(0,0)=0 (exists)fy(0,0)=limk→0kf(0,k)−f(0,0)=0 (exists)
Thus, partial derivative of the given function exists.
Continuity,
Lety=mx.lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)x2+y2xyputy=mx,lim(x,mx)→(0,0)x2+m2x2mx2=limx→01+m2m=1+m2m (notexists)
Since, limit does not exists.
Therefore, the given function is not continuous.
Comments