Let function is v = 40 s i n ω t v = 40sin\omega t v = 40 s inω t
Mean value over interval 0 to T where ω = 2 π T \omega = \frac{2 \pi}{T} ω = T 2 π
V m e a n = ∫ 0 T v d t ∫ 0 T d t = ∫ 0 T 40 s i n ω t d t ∫ 0 T d t = 40 ω [ − c o s ω t ] 0 T t 0 T V_{mean} = \frac{\int_0^T vdt}{\int_0^T dt} = \frac{\int_0^T 40sin\omega t dt}{\int_0^T dt} = \frac{\frac{40}{\omega}[-cos\omega t]_0^T}{t_0^T} V m e an = ∫ 0 T d t ∫ 0 T v d t = ∫ 0 T d t ∫ 0 T 40 s inω t d t = t 0 T ω 40 [ − cos ω t ] 0 T
V m e a n = − 40 [ c o s ω T − c o s 0 ] ω T = − 40 ω T [ c o s 2 π − c o s 0 ] = − 40 ω T [ 1 − 1 ] = 0 V_{mean} = \frac{ -40[cos\omega T - cos0]}{\omega T} = -\frac{40}{\omega T}[cos2\pi - cos0] = -\frac{40}{\omega T}[1-1] = 0 V m e an = ω T − 40 [ cos ω T − cos 0 ] = − ω T 40 [ cos 2 π − cos 0 ] = − ω T 40 [ 1 − 1 ] = 0
RMS value in interval 0 to T,
V r m s = ∫ 0 T v 2 d t ∫ 0 T d t V_{rms} = \sqrt{\frac{\int_0^T v^2 dt}{\int_0^T dt}} V r m s = ∫ 0 T d t ∫ 0 T v 2 d t
V r m s = ∫ 0 T 1600 s i n 2 ω t d t ∫ 0 T d t = ∫ 0 T 1600 ( 1 − c o s 2 ω t ) 2 d t ∫ 0 T d t V_{rms} = \sqrt{\frac{\int_0^T 1600sin^2\omega t dt}{\int_0^T dt}} = \sqrt{\frac{\int_0^T 1600 \frac{(1-cos2\omega t)}{2}dt}{\int_0^T dt} } V r m s = ∫ 0 T d t ∫ 0 T 1600 s i n 2 ω t d t = ∫ 0 T d t ∫ 0 T 1600 2 ( 1 − cos 2 ω t ) d t
V r m s = 800 ( t − 1 2 ω s i n 2 ω t ) 0 T t 0 T = 800 ( T − 1 2 ω ( s i n 2 ω T − s i n 0 ) ) T V_{rms} = \sqrt{\frac{ 800(t - \frac{1}{2\omega}sin2\omega t)_0^T }{t_0^T}} = \sqrt{\frac{ 800(T - \frac{1}{2\omega}(sin2\omega T - sin0)) }{T} } V r m s = t 0 T 800 ( t − 2 ω 1 s in 2 ω t ) 0 T = T 800 ( T − 2 ω 1 ( s in 2 ω T − s in 0 ))
V r m s = 800 T T = 800 = 28.284 V_{rms} = \sqrt{\frac{800T}{T}} = \sqrt{800} = 28.284 V r m s = T 800 T = 800 = 28.284
Comments