For the function v = 40sin calculate the mean and rms over a range of
Let function is "v = 40sin\\omega t"
Mean value over interval 0 to T where "\\omega = \\frac{2 \\pi}{T}"
"V_{mean} = \\frac{\\int_0^T vdt}{\\int_0^T dt} = \\frac{\\int_0^T 40sin\\omega t dt}{\\int_0^T dt} = \\frac{\\frac{40}{\\omega}[-cos\\omega t]_0^T}{t_0^T}"
"V_{mean} = \\frac{ -40[cos\\omega T - cos0]}{\\omega T} = -\\frac{40}{\\omega T}[cos2\\pi - cos0] = -\\frac{40}{\\omega T}[1-1] = 0"
RMS value in interval 0 to T,
"V_{rms} = \\sqrt{\\frac{\\int_0^T v^2 dt}{\\int_0^T dt}}"
"V_{rms} = \\sqrt{\\frac{\\int_0^T 1600sin^2\\omega t dt}{\\int_0^T dt}} = \\sqrt{\\frac{\\int_0^T 1600 \\frac{(1-cos2\\omega t)}{2}dt}{\\int_0^T dt} }"
"V_{rms} = \\sqrt{\\frac{ 800(t - \\frac{1}{2\\omega}sin2\\omega t)_0^T }{t_0^T}} = \\sqrt{\\frac{ 800(T - \\frac{1}{2\\omega}(sin2\\omega T - sin0)) }{T} }"
"V_{rms} = \\sqrt{\\frac{800T}{T}} = \\sqrt{800} = 28.284"
Comments
Leave a comment