Solution. Using differentiation from first principles
dxdy=h→0limhf(x+h)−f(x)According to the condition of the problem f(x)=3x2-4x+7. Therefore
f(x+h)=3(x+h)2−4(x+h)+7=3x2+6hx+3h2−4x−4h+7. Hence
f(x+h)−f(x)=3x2+6hx+3h2−4x−4h+7−3x2+4h−7f(x+h)−f(x)=6hx+3h2−4h As result get
dxdy=h→0limh6hx+3h2−4h=h→0lim(6x+3h−4)=6x−4Answer.
dxdy=6x−4
Comments