Show that x2i +2xyj - 4xzk is solenoidal
Answer :-
V→=x2i+2xyj−4xzk\overrightarrow{V}= x^2i +2xyj - 4xzkV=x2i+2xyj−4xzk
To prove that V is solenoidal
the condition for this is ∇⋅V→=0\boxed{∇⋅\overrightarrow{V} =0}∇⋅V=0
⟹ div.(v→)=0\implies div.(\overrightarrow{v}) = 0⟹div.(v)=0
=∂(V→)∂x+∂(V→)∂y+∂(V→)∂z=\frac{∂(\overrightarrow{V})}{∂x} + \frac{∂(\overrightarrow{V})}{∂y} + \frac{∂(\overrightarrow{V})}{∂z}=∂x∂(V)+∂y∂(V)+∂z∂(V)
=∂(x2)∂x+∂(2xy)∂y+∂(−4xz)∂z=\frac{∂(x^2)}{∂x} +\frac{∂(2xy)}{∂y} +\frac{∂(-4xz)}{∂z}=∂x∂(x2)+∂y∂(2xy)+∂z∂(−4xz)
=2x+2x−4x= 2x +2x - 4x=2x+2x−4x
= 0
∇⋅V→∇⋅\overrightarrow{V}∇⋅V comes out to be zero so ,
⟹ \implies⟹ given vector is solenoidal
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments