Question #188143

4. An electrical voltage E is given by: E = ( 8 sin50Ο€t + 14 cos50 Ο€t ) volts. Where t is the time in seconds. Determine the maximum value of the voltage


1
Expert's answer
2021-05-11T05:23:05-0400

E=8sin⁑(50Ο€t)+14cos⁑(50Ο€t).E = 8 \sin(50\pi t) + 14 \cos(50 \pi t ) .

The maximum and minimum values correspond to points, where the derivative is equal to 0. Let us take the derivative with respect to t:

Eβ€²=8β‹…50Ο€β‹…cos⁑(50Ο€t)βˆ’14β‹…50Ο€β‹…sin⁑(50Ο€t)=0.E' = 8\cdot 50\pi \cdot \cos ( 50\pi t) - 14\cdot 50\pi \cdot \sin ( 50\pi t) = 0.

8β‹…cos⁑(50Ο€t)βˆ’14β‹…sin⁑(50Ο€t)=0.4β‹…cos⁑(50Ο€t)=7β‹…sin⁑(50Ο€t).8\cdot \cos ( 50\pi t) - 14 \cdot \sin ( 50\pi t) = 0. \\ 4\cdot \cos ( 50\pi t)= 7 \cdot \sin ( 50\pi t).

47=tan⁑(50Ο€t)β‡’50Ο€t=atan 47+Ο€k,k∈Z\dfrac47 = \tan (50\pi t) \Rightarrow 50\pi t = \mathrm{atan}\,\dfrac47 + \pi k, k\in\mathbb{Z}

We should take only those values of argument, where the derivative changes its sign from positive to negative. On an interval [atan 47+2Ο€k,atan 47+Ο€+2Ο€k]\left[ \mathrm{atan}\,\dfrac47 + 2\pi k, \mathrm{atan}\,\dfrac47 +\pi+ 2\pi k\right] lie the points 2Ο€k+Ο€22\pi k + \dfrac{\pi}{2} and 2Ο€k+Ο€.2\pi k + \pi.

Eβ€²(2Ο€k+Ο€2)=8β‹…50Ο€β‹…cos⁑(2Ο€k+Ο€2)βˆ’14β‹…50Ο€β‹…sin⁑(2Ο€k+Ο€2)=βˆ’14β‹…50Ο€,E'\left(2\pi k + \dfrac{\pi}{2}\right) = 8\cdot 50\pi \cdot \cos \left( 2\pi k + \dfrac{\pi}{2}\right) - 14\cdot 50\pi \cdot \sin \left(2\pi k + \dfrac{\pi}{2}\right) =- 14\cdot 50\pi ,

Eβ€²(2Ο€k+Ο€)=8β‹…50Ο€β‹…cos⁑(2Ο€k+Ο€)βˆ’14β‹…50Ο€β‹…sin⁑(2Ο€k+Ο€)=βˆ’8β‹…50Ο€,E'\left(2\pi k + {\pi} \right) = 8\cdot 50\pi \cdot \cos \left( 2\pi k + {\pi} \right) - 14\cdot 50\pi \cdot \sin \left(2\pi k + \pi \right) =- 8\cdot 50\pi ,

we see the derivative is negative here, so on[atan 47+2Ο€k,atan 47+Ο€+2Ο€k]\left[ \mathrm{atan}\,\dfrac47 + 2\pi k, \mathrm{atan}\,\dfrac47 +\pi+ 2\pi k\right] the function decreases, so 50Ο€t=atan 47+2Ο€k,k∈Z50\pi t = \mathrm{atan}\,\dfrac47 + 2\pi k, k \in \mathbb{Z} are the points of maximum.

Therefore, t=150Ο€atan 47+125k,k∈Zt = \dfrac{1}{50\pi}\mathrm{atan}\,\dfrac47 + \dfrac{1}{25} k, k \in \mathbb{Z} .


Now we should put this answer into the formula for E. We know, that 50Ο€t=atan 47+2Ο€k,k∈Z,50\pi t = \mathrm{atan}\,\dfrac47 + 2\pi k, k \in \mathbb{Z},

so we may take k = 0 as a representative point. So, E=8sin⁑(atan47)+14cos⁑(atan47)β‰ˆ16.12 V.E = 8\sin\left(\mathrm{atan}\dfrac47\right) + 14\cos\left (\mathrm{atan}\dfrac47\right) \approx 16.12\,\mathrm{V}.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
10.05.21, 12:54

Dear VPM, thank you for correcting us.

VPM
08.05.21, 19:10

the answer worked out the t= time in seconds but how do I work out the maximum value of voltage as it not answered

LATEST TUTORIALS
APPROVED BY CLIENTS