Answer to Question #159826 in Calculus for Sean Sith

Question #159826

Set up a sum of integrals that will give the area of the quadrilateral with vertices at (0,0), (1,1), (0,2), and (2,1), connected in the stated order.



1
Expert's answer
2021-02-02T04:38:52-0500



1.BC    y2=2102(x0)    y2=12(x)1. BC\implies y-2=\frac{2-1}{0-2}(x-0)\implies y-2=\frac{1}{2}(x)

BC    2y+4=x    x=42yBC\implies 2y+4=x\implies x=4-2y


2.CA    y1=1020(x2)    y1=12(x2)2. CA\implies y-1=\frac{1-0}{2-0}(x-2)\implies y-1=\frac{1}{2}(x-2)

CA    2y2=x2    x=2yCA\implies 2y-2=x-2\implies x=2y


3.BD    y2=2101(x0)    y2=11(x)3. BD\implies y-2=\frac{2-1}{0-1}(x-0)\implies y-2=\frac{1}{-1}(x)

BD    y+2=x    x=2yBD\implies -y+2=x\implies x=2-y


4.DA    y1=1010(x1)    y1=11(x1)4. DA\implies y-1=\frac{1-0}{1-0}(x-1)\implies y-1=\frac{1}{1}(x-1)

DA    y1=x1    x=yDA\implies y-1=x-1\implies x=y


Area of shaded region =12xBCdy12xBDdy+01xCAdy01xDAdy\int_1^2x_{BC}dy-\int_1^2x_{BD}dy+\int_0^1x_{CA}dy-\int_0^1x_{DA}dy

12(42y)dy12(2y)dy+012ydy01ydy\int_1^2(4-2y)dy-\int_1^2(2-y)dy+\int_0^12ydy-\int_0^1ydy

[4yy2]12[2y0.5y2]12+[y2]01[0.5y2]01[4y-y^2]_1^2-[2y-0.5y^2]_1^2+[y^2]_0^1-[0.5y^2]_0^1

10.5+0.5+01-0.5+0.5+0

11


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment