Set up a sum of integrals that will give the area of the quadrilateral with vertices at (0,0), (1,1), (0,2), and (2,1), connected in the stated order.
"1. BC\\implies y-2=\\frac{2-1}{0-2}(x-0)\\implies y-2=\\frac{1}{2}(x)"
"BC\\implies 2y+4=x\\implies x=4-2y"
"2. CA\\implies y-1=\\frac{1-0}{2-0}(x-2)\\implies y-1=\\frac{1}{2}(x-2)"
"CA\\implies 2y-2=x-2\\implies x=2y"
"3. BD\\implies y-2=\\frac{2-1}{0-1}(x-0)\\implies y-2=\\frac{1}{-1}(x)"
"BD\\implies -y+2=x\\implies x=2-y"
"4. DA\\implies y-1=\\frac{1-0}{1-0}(x-1)\\implies y-1=\\frac{1}{1}(x-1)"
"DA\\implies y-1=x-1\\implies x=y"
Area of shaded region ="\\int_1^2x_{BC}dy-\\int_1^2x_{BD}dy+\\int_0^1x_{CA}dy-\\int_0^1x_{DA}dy"
"\\int_1^2(4-2y)dy-\\int_1^2(2-y)dy+\\int_0^12ydy-\\int_0^1ydy"
"[4y-y^2]_1^2-[2y-0.5y^2]_1^2+[y^2]_0^1-[0.5y^2]_0^1"
"1-0.5+0.5+0"
"1"
Comments
Leave a comment