Question #159826

Set up a sum of integrals that will give the area of the quadrilateral with vertices at (0,0), (1,1), (0,2), and (2,1), connected in the stated order.



1
Expert's answer
2021-02-02T04:38:52-0500



1.BC  ⟹  y−2=2−10−2(x−0)  ⟹  y−2=12(x)1. BC\implies y-2=\frac{2-1}{0-2}(x-0)\implies y-2=\frac{1}{2}(x)

BC  ⟹  2y+4=x  ⟹  x=4−2yBC\implies 2y+4=x\implies x=4-2y


2.CA  ⟹  y−1=1−02−0(x−2)  ⟹  y−1=12(x−2)2. CA\implies y-1=\frac{1-0}{2-0}(x-2)\implies y-1=\frac{1}{2}(x-2)

CA  ⟹  2y−2=x−2  ⟹  x=2yCA\implies 2y-2=x-2\implies x=2y


3.BD  ⟹  y−2=2−10−1(x−0)  ⟹  y−2=1−1(x)3. BD\implies y-2=\frac{2-1}{0-1}(x-0)\implies y-2=\frac{1}{-1}(x)

BD  ⟹  −y+2=x  ⟹  x=2−yBD\implies -y+2=x\implies x=2-y


4.DA  ⟹  y−1=1−01−0(x−1)  ⟹  y−1=11(x−1)4. DA\implies y-1=\frac{1-0}{1-0}(x-1)\implies y-1=\frac{1}{1}(x-1)

DA  ⟹  y−1=x−1  ⟹  x=yDA\implies y-1=x-1\implies x=y


Area of shaded region =∫12xBCdy−∫12xBDdy+∫01xCAdy−∫01xDAdy\int_1^2x_{BC}dy-\int_1^2x_{BD}dy+\int_0^1x_{CA}dy-\int_0^1x_{DA}dy

∫12(4−2y)dy−∫12(2−y)dy+∫012ydy−∫01ydy\int_1^2(4-2y)dy-\int_1^2(2-y)dy+\int_0^12ydy-\int_0^1ydy

[4y−y2]12−[2y−0.5y2]12+[y2]01−[0.5y2]01[4y-y^2]_1^2-[2y-0.5y^2]_1^2+[y^2]_0^1-[0.5y^2]_0^1

1−0.5+0.5+01-0.5+0.5+0

11


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS