Question #159769

Locate the absolute maximum and minimum for each of the following functions and justify your responses. (Show all work)

Question 1: 𝑓(𝑥) = Cube root of x^2 − 𝑥 on the interval [−1,1] 

Question 2: g(x)=xe^2x on the interval [-2,0]



First and Second Derivative Analysis :For each of the following functions, respond to the given prompts. Show all work that leads to your responses:


Given 𝑓(𝑥) = 3𝑥 3 − 18𝑥 2 − 45𝑥 + 10


a. On what interval(s), is 𝑓(𝑥) increasing? Justify. show all work


b. At what value(s) of 𝑥 does 𝑓(𝑥) have a relative minimum? Justify. show all work


c. On what interval(s), is 𝑓(𝑥) decreasing and concave up? Justify. show all work




1
Expert's answer
2021-02-02T05:08:27-0500

The absolute maximum and minimum

Supposethatx=cisacriticalpointoff(x)then,\mathrm{Suppose\:that\:}x=c\mathrm{\:is\:a\:critical\:point\:of\:}f\left(x\right)\mathrm{\:then,\:}

\mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}

\mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>\:0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:minimum.}

\mathrm{If\:}f\:'\left(x\right)\mathrm{\:is\:the\:same\:sign\:on\:both\:sides\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:neither\:a\:local\:maximum\:nor\:a\:local\:minimum.}

f(x)f'(x) gives stationary points. Hence differentiation with respect to x


1) Applying chain rule f(x)=13(x2x)23ddx(x2x)=13(x2x)23(2x1)f'(x)=\frac{1}{3\left(x^2-x\right)^{\frac{2}{3}}}\frac{d}{dx}\left(x^2-x\right)=\frac{1}{3\left(x^2-x\right)^{\frac{2}{3}}}\left(2x-1\right)

f(x)=2x13(x2x)23f'(x)=\frac{2x-1}{3\left(x^2-x\right)^{\frac{2}{3}}}

Hence (x,f(x))=(1,23)(x,f(x))=(−1,-2\sqrt3) for absolute maximum

Hence (x,f(x))=(1,34)(x,f(x))=(−1,-\frac{\sqrt3}{4}) for absolute minimum


2) First derivative for 3x318x245x+103x^3−18x^2−\:45x+10

    f(x)=ddx(3x3)ddx(18x2)ddx(45x)+ddx(10)\implies f'(x)=\frac{d}{dx}\left(3x^3\right)-\frac{d}{dx}\left(18x^2\right)-\frac{d}{dx}\left(45x\right)+\frac{d}{dx}\left(10\right)

    f(x)=9x236x45\implies f'(x)=9x^2-36x-45

Second derivative for 3x318x245x+103x^3−18x^2−\:45x+10

    f(x)=ddx(9x2)ddx(36x)ddx(45)\implies f''(x)=\frac{d}{dx}(9x^2)-\frac{d}{dx}(36x)-\frac{d}{dx}(45)

    f(x)=18x36\implies f''(x)=18x-36


a. Increasing interval(s) of 𝑓(𝑥) \mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}

Hence f(x)>0f'(x)>0 is the increasing intervals     \implies (<x<1)and(5<x<)(-\infty <x<-1) and (5<x<\infty )


b. A relative minimum is when f(x)=9x236x45=0f'\left(x\right)=9x^2−36x−45=0

x1,2=(36)±(36)249(45)29x_{1,\:2}=\frac{-\left(-36\right)\pm \sqrt{\left(-36\right)^2-4\cdot \:9\left(-45\right)}}{2\cdot \:9}

x1,2=(36)±5429x_{1,\:2}=\frac{-\left(-36\right)\pm \:54}{2\cdot \:9}

x1=(36)+5429,x2=(36)5429x_1=\frac{-\left(-36\right)+54}{2\cdot \:9},\:x_2=\frac{-\left(-36\right)-54}{2\cdot \:9}

x=5,x=1x=5,\:x=-1

Minimum(5,290)\mathrm{Minimum}\left(5,\:-290\right)

At x=5, 𝑓(𝑥) have a relative minimum


c. Decreasing interval(s) of 𝑓(𝑥) \mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}

Hence f(x)<0f'(x)<0 is the decreasing interval     (1<x<5)\implies (-1<x<5)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS