Locate the absolute maximum and minimum for each of the following functions and justify your responses. (Show all work)
Question 1: π(π₯) = Cube root of x^2 β π₯ on the interval [β1,1]Β
Question 2: g(x)=xe^2x on the interval [-2,0]
First and Second Derivative AnalysisΒ :For each of the following functions, respond to the given prompts. Show all work that leads to your responses:
Given π(π₯) = 3π₯ 3 β 18π₯ 2 β 45π₯ + 10
a. On what interval(s), is π(π₯) increasing? Justify. show all work
b. At what value(s) of π₯ does π(π₯) have a relative minimum? Justify. show all work
c. On what interval(s), is π(π₯) decreasing and concave up? Justify. show all work
The absolute maximum and minimum
"\\mathrm{Suppose\\:that\\:}x=c\\mathrm{\\:is\\:a\\:critical\\:point\\:of\\:}f\\left(x\\right)\\mathrm{\\:then,\\:}"
"\\mathrm{If\\:}f\\:'\\left(x\\right)>0\\mathrm{\\:to\\:the\\:left\\:of\\:}x=c\\mathrm{\\:and\\:}f\\:'\\left(x\\right)<0\\mathrm{\\:to\\:the\\:right\\:of\\:}x=c\\mathrm{\\:then\\:}x=c\\mathrm{\\:is\\:a\\:local\\:maximum.}"
"\\mathrm{If\\:}f\\:'\\left(x\\right)<0\\mathrm{\\:to\\:the\\:left\\:of\\:}x=c\\mathrm{\\:and\\:}f\\:'\\left(x\\right)>\\:0\\mathrm{\\:to\\:the\\:right\\:of\\:}x=c\\mathrm{\\:then\\:}x=c\\mathrm{\\:is\\:a\\:local\\:minimum.}"
"\\mathrm{If\\:}f\\:'\\left(x\\right)\\mathrm{\\:is\\:the\\:same\\:sign\\:on\\:both\\:sides\\:of\\:}x=c\\mathrm{\\:then\\:}x=c\\mathrm{\\:is\\:neither\\:a\\:local\\:maximum\\:nor\\:a\\:local\\:minimum.}"
"f'(x)" gives stationary points. Hence differentiation with respect to x
1) Applying chain rule "f'(x)=\\frac{1}{3\\left(x^2-x\\right)^{\\frac{2}{3}}}\\frac{d}{dx}\\left(x^2-x\\right)=\\frac{1}{3\\left(x^2-x\\right)^{\\frac{2}{3}}}\\left(2x-1\\right)"
"f'(x)=\\frac{2x-1}{3\\left(x^2-x\\right)^{\\frac{2}{3}}}"
Hence "(x,f(x))=(\u22121,-2\\sqrt3)" for absolute maximum
Hence "(x,f(x))=(\u22121,-\\frac{\\sqrt3}{4})" for absolute minimum
2) First derivative for "3x^3\u221218x^2\u2212\\:45x+10"
"\\implies f'(x)=\\frac{d}{dx}\\left(3x^3\\right)-\\frac{d}{dx}\\left(18x^2\\right)-\\frac{d}{dx}\\left(45x\\right)+\\frac{d}{dx}\\left(10\\right)"
"\\implies f'(x)=9x^2-36x-45"
Second derivative for "3x^3\u221218x^2\u2212\\:45x+10"
"\\implies f''(x)=\\frac{d}{dx}(9x^2)-\\frac{d}{dx}(36x)-\\frac{d}{dx}(45)"
"\\implies f''(x)=18x-36"
a. Increasing interval(s) of π(π₯) "\\mathrm{If\\:}f\\:'\\left(x\\right)>0\\mathrm{\\:to\\:the\\:left\\:of\\:}x=c\\mathrm{\\:and\\:}f\\:'\\left(x\\right)<0\\mathrm{\\:to\\:the\\:right\\:of\\:}x=c\\mathrm{\\:then\\:}x=c\\mathrm{\\:is\\:a\\:local\\:maximum.}"
Hence "f'(x)>0" is the increasing intervals "\\implies" "(-\\infty <x<-1) and (5<x<\\infty )"
b. A relative minimum is when "f'\\left(x\\right)=9x^2\u221236x\u221245=0"
"x_{1,\\:2}=\\frac{-\\left(-36\\right)\\pm \\sqrt{\\left(-36\\right)^2-4\\cdot \\:9\\left(-45\\right)}}{2\\cdot \\:9}"
"x_{1,\\:2}=\\frac{-\\left(-36\\right)\\pm \\:54}{2\\cdot \\:9}"
"x_1=\\frac{-\\left(-36\\right)+54}{2\\cdot \\:9},\\:x_2=\\frac{-\\left(-36\\right)-54}{2\\cdot \\:9}"
"x=5,\\:x=-1"
"\\mathrm{Minimum}\\left(5,\\:-290\\right)"
At x=5, π(π₯) have a relative minimum
c. Decreasing interval(s) of π(π₯) "\\mathrm{If\\:}f\\:'\\left(x\\right)<0\\mathrm{\\:to\\:the\\:left\\:of\\:}x=c\\mathrm{\\:and\\:}f\\:'\\left(x\\right)>0\\mathrm{\\:to\\:the\\:right\\:of\\:}x=c\\mathrm{\\:then\\:}x=c\\mathrm{\\:is\\:a\\:local\\:maximum.}"
Hence "f'(x)<0" is the decreasing interval "\\implies (-1<x<5)"
Comments
Leave a comment