Locate the absolute maximum and minimum for each of the following functions and justify your responses. (Show all work)
Question 1: 𝑓(𝑥) = Cube root of x^2 − 𝑥 on the interval [−1,1]
Question 2: g(x)=xe^2x on the interval [-2,0]
First and Second Derivative Analysis :For each of the following functions, respond to the given prompts. Show all work that leads to your responses:
Given 𝑓(𝑥) = 3𝑥 3 − 18𝑥 2 − 45𝑥 + 10
a. On what interval(s), is 𝑓(𝑥) increasing? Justify. show all work
b. At what value(s) of 𝑥 does 𝑓(𝑥) have a relative minimum? Justify. show all work
c. On what interval(s), is 𝑓(𝑥) decreasing and concave up? Justify. show all work
The absolute maximum and minimum
\mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}
\mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>\:0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:minimum.}
\mathrm{If\:}f\:'\left(x\right)\mathrm{\:is\:the\:same\:sign\:on\:both\:sides\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:neither\:a\:local\:maximum\:nor\:a\:local\:minimum.}
gives stationary points. Hence differentiation with respect to x
1) Applying chain rule
Hence for absolute maximum
Hence for absolute minimum
2) First derivative for
Second derivative for
a. Increasing interval(s) of 𝑓(𝑥) \mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}
Hence is the increasing intervals
b. A relative minimum is when
At x=5, 𝑓(𝑥) have a relative minimum
c. Decreasing interval(s) of 𝑓(𝑥) \mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}
Hence is the decreasing interval
Comments