Question #159569

given (x^2)/x^2-4

Find all critical values for 𝑔(𝑥). Show all work and explain




b. Find 𝑔 ′′(𝑥). Then, use your answers from part (a) and the 2nd derivative test to determine if each critical value represents a relative maximum, minimum, or neither. Show all work and explain




c. On what interval(s), if any, is 𝑔(𝑥) concave down. Show all work and explain


1
Expert's answer
2021-02-03T01:20:10-0500

g(x)=x2x24g(x) = \cfrac{x^2}{x^2-4}


a) Find all critical values:

Critical values is values where first derivative is equal to zero (g(x)=0g\prime(x)= 0 )

So find firs derivative:

g(x)=(x2x24)=2x(x24)2x3(x24)2=8x(x24)2g\prime(x) = (\cfrac{x^2}{x^2-4})\prime = \cfrac{2x(x^2-4)-2x^3}{(x^2-4)^2}= -\cfrac{8x}{(x^2-4)^2}

Find critical values:

g(x)=08x(x24)2=0=>x0=0g\prime(x) = 0\\ -\cfrac{8x}{(x^2-4)^2} = 0 => x_0= 0

So we have one critical value.


b) Relative maximum or minimum:

If g(x0)>0,g\prime\prime(x_0) > 0, then x0x_0 - is relative minimum

if g(x0)<0,g\prime\prime(x_0) < 0, then x0x_0 - is relative maximum.

So find g(x)g\prime\prime(x) :

g(x)=8(x24)2+32x2(x24)(x24)4=8(x24)+32x(x24)3g\prime\prime(x) = \cfrac{-8(x^2-4)^2 + 32x^2(x^2-4)}{(x^2-4)^4} = \cfrac{-8(x^2-4)+32x}{(x^2-4)^3}

g(x0)=12<0g\prime\prime(x_0) = -\cfrac{1}{2} < 0, so x0x_0 is relative maximum


c) Where g(x)g(x) is concave down:

For all x(,2)(2,+)x \in (-\infin, -2) \cup(2,+\infin) g(x)>0g\prime\prime(x) > 0, so on this intervals function is concave down.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS