Question #159455

Suppose lim n→∞ (sn −1)/(sn +1)=0. Prove that limn→∞sn = 1


1
Expert's answer
2021-02-03T05:02:21-0500

Here we have,


limxsn1sn+1=0 limxsn+12sn+1=0 limx(12sn+1)=0 1limx2sn+1=0 limx1sn+1=12\lim\limits_{x\to\infin}\frac{s_n-1}{s_n+1}=0\\~\\ \Rightarrow \lim\limits_{x\to\infin} \frac{s_n+1-2}{s_n+1}=0\\~\\ \Rightarrow \lim\limits_{x\to\infin}(1-\frac{2}{s_n+1})=0\\~\\ \Rightarrow 1-\lim\limits_{x\to\infin}\frac{2}{s_n+1}=0\\~\\ \Rightarrow \lim\limits_{x\to\infin}\frac{1}{s_n+1}=\frac{1}{2}

Now, as this is an equality and RHS is finite, we can be sure that limxsn\lim\limits_{x\to\infin}s_n is some value let say cRc\in\R .

i.e. c=limxsnc=\lim\limits_{x\to\infin}s_n


Therefore,



1c+1=12 c+1=2 c=1\frac{1}{c+1}=\frac{1}{2}\\~\\ \Rightarrow c+1=2\\~\\ \Rightarrow c=1

So, we have:-



limxsn=1\fcolorbox{black}{aqua}{$\textcolor{black}{\lim\limits_{x\to\infin}s_n=1}$}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS