Here we have,
"\\lim\\limits_{x\\to\\infin}\\frac{s_n-1}{s_n+1}=0\\\\~\\\\\n\\Rightarrow \\lim\\limits_{x\\to\\infin} \\frac{s_n+1-2}{s_n+1}=0\\\\~\\\\\n\\Rightarrow \\lim\\limits_{x\\to\\infin}(1-\\frac{2}{s_n+1})=0\\\\~\\\\\n\\Rightarrow 1-\\lim\\limits_{x\\to\\infin}\\frac{2}{s_n+1}=0\\\\~\\\\\n\\Rightarrow \\lim\\limits_{x\\to\\infin}\\frac{1}{s_n+1}=\\frac{1}{2}"
Now, as this is an equality and RHS is finite, we can be sure that "\\lim\\limits_{x\\to\\infin}s_n" is some value let say "c\\in\\R" .
i.e. "c=\\lim\\limits_{x\\to\\infin}s_n"
Therefore,
"\\frac{1}{c+1}=\\frac{1}{2}\\\\~\\\\\n\\Rightarrow c+1=2\\\\~\\\\\n\\Rightarrow c=1" So, we have:-
"\\fcolorbox{black}{aqua}{$\\textcolor{black}{\\lim\\limits_{x\\to\\infin}s_n=1}$}"
Comments
Leave a comment