find y′y'y′ for each:
1. y=x3sinxy= x³ sin xy=x3sinx
y=x2+2xcosxy= x² + 2x cos xy=x2+2xcosx2. y=x2+2xy= x² + 2xy=x2+2x cosxcos xcosx
3.y=x/(secx+1)y = x/( sec x + 1)y=x/(secx+1)
y=x2+2xcosxy= x² + 2x cos xy=x2+2xcosx
1) y′=3x2sinx+x3cosxy'=3x^2\sin x+x^3\cos xy′=3x2sinx+x3cosx
2) y′=2x+2cosx−2xsinxy'=2x+2\cos x-2x\sin xy′=2x+2cosx−2xsinx
3) y′=secx+1−xtanxsecx(secx+1)2y'=\frac{\sec x +1-x\tan x\sec x}{(\sec x+1)^2}y′=(secx+1)2secx+1−xtanxsecx
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments