Locate the absolute maximum and minimum for each of the following functions and justify your responses. (Show all work)
1) π(π₯) = square root of x^2 β π₯ on the interval [β1,1]
2) π(π₯) = π₯π^2π₯ on the interval [β2,0]
"Solution: (i)~Given ~ that ~: f(x)=\\sqrt {x^2-x } ~on ~[-1,1]\n\\\\We~find ~ f'(x)=(2x-1) \\frac{1}{2(x^2 -x )^{\\frac{1}{2}}}\n\\\\Now ~solving ~ for ~ (2x-1) \\frac{1}{2(x^2 -x )^{\\frac{1}{2}}}=0\n\\\\we ~get~ x=\\frac{1}{2}\n\\\\ \\therefore ~we~ find~ f(x)~ on~~ the ~ points x=-1,\\frac{1}{2},1\n\\\\ \\therefore we~ get,f(-1)= \\sqrt{2}=1.41421\n\\\\~~~~~~~~~~~~~~~~~~~~f(\\frac{1}{2})=0.8660~and\n\\\\~~~~~~~~~~~~~~~~~~~~~f(0)=0\n\\\\ \\therefore (2x-1) \\frac{1}{2(x^2 -x )^{\\frac{1}{2}}}\n\\\\\\therefore Absolute~ Maximum~=1.41421~ and ~Absolute ~minimum~=~0\n\\\\(ii)~g(x)=xe^{2x}~on~[-2,0]\n\\\\ \\therefore g'(x)=2xe^{2x}+e^{2x}=e^{2x}(2x+1)\n\\\\ Solving, e^{2x}(2x+1)=0, We~ get,\n\\\\x=-\\frac{1}{2}\n\\\\ \\therefore we~find ~ f(x)~at ~points~x=-2,-\\frac{1}{2},0\n\\\\ \\therefore f(-2)=-0.036631\n\\\\f(-\\frac{1}{2})=-\\frac{1}{2e}=-0.183939720~and ~\n\\\\f(0)=0\n\\\\\\therefore Absolute~ Maximum~=0~ and ~Absolute ~minimum~=~-0.183939720"
Comments
Leave a comment