Question #159567

Locate the absolute maximum and minimum for each of the following functions and justify your responses. (Show all work)


1) 𝑓(𝑥) = square root of x^2 − 𝑥 on the interval [−1,1]

2) 𝑔(𝑥) = 𝑥𝑒^2𝑥 on the interval [−2,0]


1
Expert's answer
2021-02-09T03:16:49-0500

Solution:(i) Given that :f(x)=x2x on [1,1]We find f(x)=(2x1)12(x2x)12Now solving for (2x1)12(x2x)12=0we get x=12 we find f(x) on  the pointsx=1,12,1we get,f(1)=2=1.41421                    f(12)=0.8660 and                     f(0)=0(2x1)12(x2x)12Absolute Maximum =1.41421 and Absolute minimum = 0(ii) g(x)=xe2x on [2,0]g(x)=2xe2x+e2x=e2x(2x+1)Solving,e2x(2x+1)=0,We get,x=12we find f(x) at points x=2,12,0f(2)=0.036631f(12)=12e=0.183939720 and f(0)=0Absolute Maximum =0 and Absolute minimum = 0.183939720Solution: (i)~Given ~ that ~: f(x)=\sqrt {x^2-x } ~on ~[-1,1] \\We~find ~ f'(x)=(2x-1) \frac{1}{2(x^2 -x )^{\frac{1}{2}}} \\Now ~solving ~ for ~ (2x-1) \frac{1}{2(x^2 -x )^{\frac{1}{2}}}=0 \\we ~get~ x=\frac{1}{2} \\ \therefore ~we~ find~ f(x)~ on~~ the ~ points x=-1,\frac{1}{2},1 \\ \therefore we~ get,f(-1)= \sqrt{2}=1.41421 \\~~~~~~~~~~~~~~~~~~~~f(\frac{1}{2})=0.8660~and \\~~~~~~~~~~~~~~~~~~~~~f(0)=0 \\ \therefore (2x-1) \frac{1}{2(x^2 -x )^{\frac{1}{2}}} \\\therefore Absolute~ Maximum~=1.41421~ and ~Absolute ~minimum~=~0 \\(ii)~g(x)=xe^{2x}~on~[-2,0] \\ \therefore g'(x)=2xe^{2x}+e^{2x}=e^{2x}(2x+1) \\ Solving, e^{2x}(2x+1)=0, We~ get, \\x=-\frac{1}{2} \\ \therefore we~find ~ f(x)~at ~points~x=-2,-\frac{1}{2},0 \\ \therefore f(-2)=-0.036631 \\f(-\frac{1}{2})=-\frac{1}{2e}=-0.183939720~and ~ \\f(0)=0 \\\therefore Absolute~ Maximum~=0~ and ~Absolute ~minimum~=~-0.183939720


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS