Solution:(i) Given that :f(x)=x2−x on [−1,1]We find f′(x)=(2x−1)2(x2−x)211Now solving for (2x−1)2(x2−x)211=0we get x=21∴ we find f(x) on the pointsx=−1,21,1∴we get,f(−1)=2=1.41421 f(21)=0.8660 and f(0)=0∴(2x−1)2(x2−x)211∴Absolute Maximum =1.41421 and Absolute minimum = 0(ii) g(x)=xe2x on [−2,0]∴g′(x)=2xe2x+e2x=e2x(2x+1)Solving,e2x(2x+1)=0,We get,x=−21∴we find f(x) at points x=−2,−21,0∴f(−2)=−0.036631f(−21)=−2e1=−0.183939720 and f(0)=0∴Absolute Maximum =0 and Absolute minimum = −0.183939720
Comments