S o l u t i o n : ( i ) G i v e n t h a t : f ( x ) = x 2 − x o n [ − 1 , 1 ] W e f i n d f ′ ( x ) = ( 2 x − 1 ) 1 2 ( x 2 − x ) 1 2 N o w s o l v i n g f o r ( 2 x − 1 ) 1 2 ( x 2 − x ) 1 2 = 0 w e g e t x = 1 2 ∴ w e f i n d f ( x ) o n t h e p o i n t s x = − 1 , 1 2 , 1 ∴ w e g e t , f ( − 1 ) = 2 = 1.41421 f ( 1 2 ) = 0.8660 a n d f ( 0 ) = 0 ∴ ( 2 x − 1 ) 1 2 ( x 2 − x ) 1 2 ∴ A b s o l u t e M a x i m u m = 1.41421 a n d A b s o l u t e m i n i m u m = 0 ( i i ) g ( x ) = x e 2 x o n [ − 2 , 0 ] ∴ g ′ ( x ) = 2 x e 2 x + e 2 x = e 2 x ( 2 x + 1 ) S o l v i n g , e 2 x ( 2 x + 1 ) = 0 , W e g e t , x = − 1 2 ∴ w e f i n d f ( x ) a t p o i n t s x = − 2 , − 1 2 , 0 ∴ f ( − 2 ) = − 0.036631 f ( − 1 2 ) = − 1 2 e = − 0.183939720 a n d f ( 0 ) = 0 ∴ A b s o l u t e M a x i m u m = 0 a n d A b s o l u t e m i n i m u m = − 0.183939720 Solution: (i)~Given ~ that ~: f(x)=\sqrt {x^2-x } ~on ~[-1,1]
\\We~find ~ f'(x)=(2x-1) \frac{1}{2(x^2 -x )^{\frac{1}{2}}}
\\Now ~solving ~ for ~ (2x-1) \frac{1}{2(x^2 -x )^{\frac{1}{2}}}=0
\\we ~get~ x=\frac{1}{2}
\\ \therefore ~we~ find~ f(x)~ on~~ the ~ points x=-1,\frac{1}{2},1
\\ \therefore we~ get,f(-1)= \sqrt{2}=1.41421
\\~~~~~~~~~~~~~~~~~~~~f(\frac{1}{2})=0.8660~and
\\~~~~~~~~~~~~~~~~~~~~~f(0)=0
\\ \therefore (2x-1) \frac{1}{2(x^2 -x )^{\frac{1}{2}}}
\\\therefore Absolute~ Maximum~=1.41421~ and ~Absolute ~minimum~=~0
\\(ii)~g(x)=xe^{2x}~on~[-2,0]
\\ \therefore g'(x)=2xe^{2x}+e^{2x}=e^{2x}(2x+1)
\\ Solving, e^{2x}(2x+1)=0, We~ get,
\\x=-\frac{1}{2}
\\ \therefore we~find ~ f(x)~at ~points~x=-2,-\frac{1}{2},0
\\ \therefore f(-2)=-0.036631
\\f(-\frac{1}{2})=-\frac{1}{2e}=-0.183939720~and ~
\\f(0)=0
\\\therefore Absolute~ Maximum~=0~ and ~Absolute ~minimum~=~-0.183939720 S o l u t i o n : ( i ) G i v e n t ha t : f ( x ) = x 2 − x o n [ − 1 , 1 ] W e f in d f ′ ( x ) = ( 2 x − 1 ) 2 ( x 2 − x ) 2 1 1 N o w so l v in g f or ( 2 x − 1 ) 2 ( x 2 − x ) 2 1 1 = 0 w e g e t x = 2 1 ∴ w e f in d f ( x ) o n t h e p o in t s x = − 1 , 2 1 , 1 ∴ w e g e t , f ( − 1 ) = 2 = 1.41421 f ( 2 1 ) = 0.8660 an d f ( 0 ) = 0 ∴ ( 2 x − 1 ) 2 ( x 2 − x ) 2 1 1 ∴ A b so l u t e M a x im u m = 1.41421 an d A b so l u t e minim u m = 0 ( ii ) g ( x ) = x e 2 x o n [ − 2 , 0 ] ∴ g ′ ( x ) = 2 x e 2 x + e 2 x = e 2 x ( 2 x + 1 ) S o l v in g , e 2 x ( 2 x + 1 ) = 0 , W e g e t , x = − 2 1 ∴ w e f in d f ( x ) a t p o in t s x = − 2 , − 2 1 , 0 ∴ f ( − 2 ) = − 0.036631 f ( − 2 1 ) = − 2 e 1 = − 0.183939720 an d f ( 0 ) = 0 ∴ A b so l u t e M a x im u m = 0 an d A b so l u t e minim u m = − 0.183939720
Comments