Question #158346

Use the definition of limit to prove that both of the sequences {1/ √ n } and { (−1)^n/ √ n } converges to 0.


1
Expert's answer
2021-01-26T11:55:37-0500

Solution 1:

We know that {an}\{a_n\} converges to L, or, limn=L\lim_{n \rightarrow \infty}=L if \forall ϵ\epsilon >0>0 \exist N\in Z+Z^+ such that \forall n>Nn>N,

anL<ϵ|a_n-L|<\epsilon .

Consider 1n0=1n=1n<ϵ|\dfrac{1}{\sqrt n}-0|=|\dfrac{1}{\sqrt n}|=\dfrac{1}{\sqrt n}<\epsilon

1<ϵn1ϵ<nn>1ϵ2\Rightarrow 1<\epsilon\cdot\sqrt n \Rightarrow \dfrac{1}{\epsilon}<\sqrt n \Rightarrow n>\dfrac{1}{\epsilon^2}

Proof: Let ϵ\epsilon >0>0 . Choose N>1ϵ2>\dfrac{1}{\epsilon^2} . Then, \forall n>Nn>N, 1n0=1n|\dfrac{1}{\sqrt n}-0|=|\dfrac{1}{\sqrt n}|

Also, n>N>1ϵ2ϵ2>1n1n<ϵ1n<ϵn>N>\dfrac{1}{\epsilon^2} \Rightarrow \epsilon^2>\dfrac1 n \Rightarrow \sqrt{\dfrac1n}<\epsilon \Rightarrow {\dfrac1{\sqrt n}}<\epsilon

Thus, 1n0=1n<ϵ|\dfrac{1}{\sqrt n}-0|=\dfrac{1}{\sqrt n}<\epsilon

Hence, by above statement, {1n}\{\dfrac{1}{\sqrt n}\} converges to 0.

Solution 2:

Consider (1)nn0=(1)nn=1n<ϵ|\dfrac{(-1)^n}{\sqrt n}-0|=|\dfrac{(-1)^n}{\sqrt n}|=\dfrac{1}{\sqrt n}<\epsilon

1<ϵn1ϵ<nn>1ϵ2\Rightarrow 1<\epsilon\cdot\sqrt n \Rightarrow \dfrac{1}{\epsilon}<\sqrt n \Rightarrow n>\dfrac{1}{\epsilon^2}

Proof: Let ϵ\epsilon >0>0 . Choose N>1ϵ2>\dfrac{1}{\epsilon^2} . Then, \forall n>Nn>N, (1)nn0=(1)nn=1n|\dfrac{(-1)^n}{\sqrt n}-0|=|\dfrac{(-1)^n}{\sqrt n}|=\dfrac{1}{\sqrt n}

Also, n>N>1ϵ2ϵ2>1n1n<ϵ1n<ϵn>N>\dfrac{1}{\epsilon^2} \Rightarrow \epsilon^2>\dfrac1 n \Rightarrow \sqrt{\dfrac1n}<\epsilon \Rightarrow {\dfrac1{\sqrt n}}<\epsilon

Thus, (1)nn0=(1)nn=1n<ϵ|\dfrac{(-1)^n}{\sqrt n}-0|=|\dfrac{(-1)^n}{\sqrt n}|=\dfrac{1}{\sqrt n}<\epsilon

Hence, by above statement, {(1)nn}\{\dfrac{(-1)^n}{\sqrt n}\} converges to 0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS