Use the definition of limit to prove that both of the sequences {1/ √ n } and { (−1)^n/ √ n } converges to 0.
Solution 1:
We know that "\\{a_n\\}" converges to L, or, "\\lim_{n \\rightarrow \\infty}=L" if "\\forall" "\\epsilon" ">0" "\\exist" N"\\in" "Z^+" such that "\\forall" "n>N",
"|a_n-L|<\\epsilon" .
Consider "|\\dfrac{1}{\\sqrt n}-0|=|\\dfrac{1}{\\sqrt n}|=\\dfrac{1}{\\sqrt n}<\\epsilon"
"\\Rightarrow 1<\\epsilon\\cdot\\sqrt n \\Rightarrow \\dfrac{1}{\\epsilon}<\\sqrt n \\Rightarrow n>\\dfrac{1}{\\epsilon^2}"
Proof: Let "\\epsilon" ">0" . Choose N">\\dfrac{1}{\\epsilon^2}" . Then, "\\forall" "n>N", "|\\dfrac{1}{\\sqrt n}-0|=|\\dfrac{1}{\\sqrt n}|"
Also, "n>N>\\dfrac{1}{\\epsilon^2} \\Rightarrow \\epsilon^2>\\dfrac1 n \\Rightarrow \\sqrt{\\dfrac1n}<\\epsilon \\Rightarrow {\\dfrac1{\\sqrt n}}<\\epsilon"
Thus, "|\\dfrac{1}{\\sqrt n}-0|=\\dfrac{1}{\\sqrt n}<\\epsilon"
Hence, by above statement, "\\{\\dfrac{1}{\\sqrt n}\\}" converges to 0.
Solution 2:
Consider "|\\dfrac{(-1)^n}{\\sqrt n}-0|=|\\dfrac{(-1)^n}{\\sqrt n}|=\\dfrac{1}{\\sqrt n}<\\epsilon"
"\\Rightarrow 1<\\epsilon\\cdot\\sqrt n \\Rightarrow \\dfrac{1}{\\epsilon}<\\sqrt n \\Rightarrow n>\\dfrac{1}{\\epsilon^2}"
Proof: Let "\\epsilon" ">0" . Choose N">\\dfrac{1}{\\epsilon^2}" . Then, "\\forall" "n>N", "|\\dfrac{(-1)^n}{\\sqrt n}-0|=|\\dfrac{(-1)^n}{\\sqrt n}|=\\dfrac{1}{\\sqrt n}"
Also, "n>N>\\dfrac{1}{\\epsilon^2} \\Rightarrow \\epsilon^2>\\dfrac1 n \\Rightarrow \\sqrt{\\dfrac1n}<\\epsilon \\Rightarrow {\\dfrac1{\\sqrt n}}<\\epsilon"
Thus, "|\\dfrac{(-1)^n}{\\sqrt n}-0|=|\\dfrac{(-1)^n}{\\sqrt n}|=\\dfrac{1}{\\sqrt n}<\\epsilon"
Hence, by above statement, "\\{\\dfrac{(-1)^n}{\\sqrt n}\\}" converges to 0.
Comments
Leave a comment