To show that lim n → ∞ 1 n = 0 \lim_{n \to \infty} \frac{1}{\sqrt n} = 0 lim n → ∞ n 1 = 0
We show that given any ϵ > 0 \epsilon > 0 ϵ > 0 there exist M ∈ N M \in \mathbb{N} M ∈ N such that n > M ⟹ n>M \implies n > M ⟹ ∣ 1 n − 0 ∣ < ϵ \mid \frac{1}{\sqrt n} - 0 \mid < \epsilon ∣ n 1 − 0 ∣< ϵ
Set M > 1 ϵ 2 ⟹ ϵ > 1 M M> \frac{1}{\epsilon^{2}} \implies \epsilon > \frac{1}{\sqrt M} M > ϵ 2 1 ⟹ ϵ > M 1
So, whenever n > M n> M n > M
Consider
∣ 1 n − 0 ∣ = ∣ 1 n ∣ = 1 n < 1 M < ϵ \mid \frac{1}{\sqrt n} - 0 \mid = \mid \frac {1}{\sqrt n} \mid = \frac {1}{\sqrt n} < \frac {1}{\sqrt M} < \epsilon ∣ n 1 − 0 ∣=∣ n 1 ∣= n 1 < M 1 < ϵ
as desired.
To show that lim n → ∞ ( − 1 ) n n = 0 \lim_{n \to \infty} \frac{(-1)^{n}}{\sqrt n} = 0 lim n → ∞ n ( − 1 ) n = 0
We show that given any ϵ > 0 \epsilon > 0 ϵ > 0 there exist M ∈ N M \in \mathbb{N} M ∈ N such that n > M ⟹ ∣ ( − 1 ) n n − 0 ∣ < ϵ n>M \implies \mid \frac{(-1)^n}{\sqrt n} - 0 \mid < \epsilon n > M ⟹ ∣ n ( − 1 ) n − 0 ∣< ϵ
Set M > 1 ϵ 2 ⟹ ϵ > 1 M M> \frac{1}{\epsilon^{2}} \implies \epsilon > \frac{1}{\sqrt M} M > ϵ 2 1 ⟹ ϵ > M 1
So, whenever n > M n> M n > M
Consider
∣ ( − 1 ) n n − 0 ∣ = ∣ ( − 1 ) n n ∣ ≤ ∣ 1 n ∣ = 1 n < 1 M < ϵ \mid \frac{(-1)^n}{\sqrt n} - 0 \mid = \mid \frac {(-1)^n}{\sqrt n} \mid \leq \mid \frac{1}{\sqrt n}\mid = \frac {1}{\sqrt n} < \frac {1}{\sqrt M} < \epsilon ∣ n ( − 1 ) n − 0 ∣=∣ n ( − 1 ) n ∣≤∣ n 1 ∣= n 1 < M 1 < ϵ
as desired.
Comments