Use the definition of limit to prove that both of the sequences { 1/√n } and { (−1)^n/√ n } converges to 0.
To show that "\\lim_{n \\to \\infty} \\frac{1}{\\sqrt n} = 0"
We show that given any "\\epsilon > 0" there exist "M \\in \\mathbb{N}" such that "n>M \\implies" "\\mid \\frac{1}{\\sqrt n} - 0 \\mid < \\epsilon"
Set "M> \\frac{1}{\\epsilon^{2}} \\implies \\epsilon > \\frac{1}{\\sqrt M}"
So, whenever "n> M"
Consider
"\\mid \\frac{1}{\\sqrt n} - 0 \\mid = \\mid \\frac {1}{\\sqrt n} \\mid = \\frac {1}{\\sqrt n} < \\frac {1}{\\sqrt M} < \\epsilon"
as desired.
To show that "\\lim_{n \\to \\infty} \\frac{(-1)^{n}}{\\sqrt n} = 0"
We show that given any "\\epsilon > 0" there exist "M \\in \\mathbb{N}" such that "n>M \\implies \\mid \\frac{(-1)^n}{\\sqrt n} - 0 \\mid < \\epsilon"
Set "M> \\frac{1}{\\epsilon^{2}} \\implies \\epsilon > \\frac{1}{\\sqrt M}"
So, whenever "n> M"
Consider
"\\mid \\frac{(-1)^n}{\\sqrt n} - 0 \\mid = \\mid \\frac {(-1)^n}{\\sqrt n} \\mid \\leq \\mid \\frac{1}{\\sqrt n}\\mid = \\frac {1}{\\sqrt n} < \\frac {1}{\\sqrt M} < \\epsilon"
as desired.
Comments
Leave a comment