The sequence ( 1 n + 1 ) n \left(\frac{1}{\sqrt{n}+1}\right)_n ( n + 1 1 ) n converges to 0 if
∀ ε > 0 , ∃ N ∈ N , ( n ≥ N ⟹ ∣ 1 n + 1 − 0 ∣ = 1 n + 1 ≤ ε ) . \forall \varepsilon>0,\;\exists N\in\mathbb{N},\; \left(n\geq N\implies \left|\tfrac{1}{\sqrt{n}+1}-0\right|=\tfrac{1}{\sqrt{n}+1}\leq\varepsilon\right). ∀ ε > 0 , ∃ N ∈ N , ( n ≥ N ⟹ ∣ ∣ n + 1 1 − 0 ∣ ∣ = n + 1 1 ≤ ε ) .
Let ε > 0 \varepsilon>0 ε > 0 . If we take N = ⌈ 1 ε ⌉ 2 N=\left\lceil\dfrac{1}{\varepsilon}\right\rceil^2 N = ⌈ ε 1 ⌉ 2 we obtain N = ⌈ 1 ε ⌉ ≥ 1 ε \sqrt{N}=\left\lceil\dfrac{1}{\varepsilon}\right\rceil\geq\dfrac{1}{\varepsilon} N = ⌈ ε 1 ⌉ ≥ ε 1 . Then 1 N ≤ ε \dfrac{1}{\sqrt{N}}\leq\varepsilon N 1 ≤ ε . Therefore
1 N + 1 ≤ 1 N ≤ ε . \frac{1}{\sqrt{N}+1}\leq\frac{1}{\sqrt{N}}\leq\varepsilon. N + 1 1 ≤ N 1 ≤ ε . So, for all n ≥ N , n\geq N, n ≥ N ,
1 n + 1 ≤ 1 N + 1 ≤ ϵ \frac{1}{\sqrt{n}+1}\leq\frac{1}{\sqrt{N}+1}\leq\epsilon n + 1 1 ≤ N + 1 1 ≤ ϵ
Comments