Use the definition of limit to prove that the sequence { 1/√n+1 } converges to 0
The sequence "\\left(\\frac{1}{\\sqrt{n}+1}\\right)_n" converges to 0 if
Let "\\varepsilon>0". If we take "N=\\left\\lceil\\dfrac{1}{\\varepsilon}\\right\\rceil^2" we obtain "\\sqrt{N}=\\left\\lceil\\dfrac{1}{\\varepsilon}\\right\\rceil\\geq\\dfrac{1}{\\varepsilon}". Then "\\dfrac{1}{\\sqrt{N}}\\leq\\varepsilon". Therefore
"\\frac{1}{\\sqrt{N}+1}\\leq\\frac{1}{\\sqrt{N}}\\leq\\varepsilon."So, for all "n\\geq N,"
"\\frac{1}{\\sqrt{n}+1}\\leq\\frac{1}{\\sqrt{N}+1}\\leq\\epsilon"
Comments
Leave a comment