Question #157749

A cylindrical frame consisting of 2 circles and 4 vertical support bars are built from a piece of wire 180cm long, cut into 6 sections: 2 circles of one length and 4 straight pieces of another length. Find the lengths of the sections that will maximize the volume of the cylinder. [Vcylinder = πr^2h]


1
Expert's answer
2021-01-26T03:27:24-0500

the length L=180 of the frame is\text{the length }L=180\text{ of the frame is}

L=22πr+4hL= 2*2\pi{r}+4h

where r base radius\text{where }r\text{ base radius}

h heigth of the frame h\text{ heigth of the frame }

180=4πr+4h180 = 4\pi{r}+4h

r=45hπr = \frac{45-h}{\pi}

V=πr2hV = \pi{r^2h}

volume increases if r>1 and h>1\text{volume increases if } r>1\text{ and } h>1

45hπ>1\frac{45-h}{\pi}>1

h<45πh<45-\pi

r=45hπ;h(1,45π)r= \frac{45-h}{\pi};h\isin(1,45-\pi)

Answer:r=45hπ;h(1,45π)r= \frac{45-h}{\pi};h\isin(1,45-\pi)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS