"x=\\frac{y^2}{4a},"
"k=x_y'=\\frac{y}{2a},"
"x-at_i^2=\\frac{2at_i}{2a}(y-2at_i),"
"\\begin{cases}\n x-at_1^2=t_1(y-2at_1), \\\\\n x-at_2^2=t_2(y-2at_2);\n\\end{cases}"
"\\begin{cases}\nx_0=at_1t_2, \\\\\n y_0=a(t_1+t_2); \n\\end{cases}" – coordinates of point P.
Line PM (parallel to the x-axis) has an equation "y=a(t_1+t_2)."
Midpoint of AB has coordinates "(\\frac a2(t_1^2+t_2^2),~a(t_1+t_2))."
AB equation: "2x-(t_1+t_2)y+2at_1t_2=0,"
with a PM equation we'll have
"\\begin{cases}\nx_0=\\frac a2(t_1^2+t_2^2), \\\\\n y_0=a(t_1+t_2); \n\\end{cases}" – coordinates of point M, and they are equal to the coordinates of point P.
Comments
Leave a comment