Integration[-2xy/(x²+y²)²] with respect to y
∫−2xy(x2+y2)2dy=−x∫1(x2+y2)2d(y2)=−x∫1(x2+q)2dq\int \frac{-2xy}{(x^2+y^2)^2}dy=-x\int \frac{1}{(x^2+y^2)^2}d(y^2)=-x \int \frac{1}{(x^2+q)^2}dq∫(x2+y2)2−2xydy=−x∫(x2+y2)21d(y2)=−x∫(x2+q)21dq =−x∫1w2dw=−x(−1w+constant)=-x\int \frac{1}{w^2}dw=-x(- \frac{1}{w}+constant)=−x∫w21dw=−x(−w1+constant) =xw+constant=xx2+q+constant=\frac{x}{w}+constant=\frac{x}{x^2+q}+constant=wx+constant=x2+qx+constant =xx2+y2+constant=\frac{x}{x^2+y^2}+constant=x2+y2x+constant
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments