The equation of normal at the point Q:
t3x=c(t4−1)
Then point Q: (t3c(t4−1),0)
The equation of the tangent at the point P:
y−yP=f′(P)(x−xP)
y′(x)=−x2c2
f′(P)=−c2t2c2=−t21
Then:
y−c/t=−t21(x−ct)
At the point R:
y−c/t=c/t
Point R: (0,2c/t)
Midpoint of QR: (2t3c(t4−1),tc)
Then, for midpoint of QR:
2c2xy+y4=t4c4(t4−1)+t4c4=t4c4t4=c4
Comments
Leave a comment