The equation of normal at the point Q:
"t^3x=c(t^4-1)"
Then point Q: "(\\frac{c(t^4-1)}{t^3},0)"
The equation of the tangent at the point P:
"y-y_P=f'(P)(x-x_P)"
"y'(x)=-\\frac{c^2}{x^2}"
"f'(P)=-\\frac{c^2}{c^2t^2}=-\\frac{1}{t^2}"
Then:
"y-c\/t=-\\frac{1}{t^2}(x-ct)"
At the point R:
"y-c\/t=c\/t"
Point R: "(0, 2c\/t)"
Midpoint of QR: "(\\frac{c(t^4-1)}{2t^3}, \\frac{c}{t})"
Then, for midpoint of QR:
"2c^2xy + y^4=\\frac{c^4(t^4-1)}{t^4}+\\frac{c^4}{t^4}=\\frac{c^4t^4}{t^4}=c^4"
Comments
Leave a comment