Prove that |x+y+z|<=|x|+|y|+|z|
"\\text {let }a,b\\in{R}"
"a*b \\le|a|*|b|"
"(a+b)^2=a^2+b^2+2a*b\\le{a^2+b^2+2|a|*|b|}"
"a^2+b^2+2|a|*|b|=|a|^2+|b|^2+2|a|*|b|=(|a|+|b|)^2"
"(a+b)^2\\le(|a|+|b|)^2"
"\\sqrt{(a+b)^2}\\le\\sqrt{(|a|+|b|)^2}"
"|a+b|\\le|a|+|b|\\ (1)"
"|x+y+z| \\text{ let }a=x+y;b=z"
"\\text{from inequality }(1)"
"|x+y+z|\\le|x+y|+|z|\\le|x|+|y|+|z|"
proved.
Comments
Leave a comment