let a , b ∈ R \text {let }a,b\in{R} let a , b ∈ R
a ∗ b ≤ ∣ a ∣ ∗ ∣ b ∣ a*b \le|a|*|b| a ∗ b ≤ ∣ a ∣ ∗ ∣ b ∣
( a + b ) 2 = a 2 + b 2 + 2 a ∗ b ≤ a 2 + b 2 + 2 ∣ a ∣ ∗ ∣ b ∣ (a+b)^2=a^2+b^2+2a*b\le{a^2+b^2+2|a|*|b|} ( a + b ) 2 = a 2 + b 2 + 2 a ∗ b ≤ a 2 + b 2 + 2∣ a ∣ ∗ ∣ b ∣
a 2 + b 2 + 2 ∣ a ∣ ∗ ∣ b ∣ = ∣ a ∣ 2 + ∣ b ∣ 2 + 2 ∣ a ∣ ∗ ∣ b ∣ = ( ∣ a ∣ + ∣ b ∣ ) 2 a^2+b^2+2|a|*|b|=|a|^2+|b|^2+2|a|*|b|=(|a|+|b|)^2 a 2 + b 2 + 2∣ a ∣ ∗ ∣ b ∣ = ∣ a ∣ 2 + ∣ b ∣ 2 + 2∣ a ∣ ∗ ∣ b ∣ = ( ∣ a ∣ + ∣ b ∣ ) 2
( a + b ) 2 ≤ ( ∣ a ∣ + ∣ b ∣ ) 2 (a+b)^2\le(|a|+|b|)^2 ( a + b ) 2 ≤ ( ∣ a ∣ + ∣ b ∣ ) 2
( a + b ) 2 ≤ ( ∣ a ∣ + ∣ b ∣ ) 2 \sqrt{(a+b)^2}\le\sqrt{(|a|+|b|)^2} ( a + b ) 2 ≤ ( ∣ a ∣ + ∣ b ∣ ) 2
∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ ( 1 ) |a+b|\le|a|+|b|\ (1) ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ ( 1 )
∣ x + y + z ∣ let a = x + y ; b = z |x+y+z| \text{ let }a=x+y;b=z ∣ x + y + z ∣ let a = x + y ; b = z
from inequality ( 1 ) \text{from inequality }(1) from inequality ( 1 )
∣ x + y + z ∣ ≤ ∣ x + y ∣ + ∣ z ∣ ≤ ∣ x ∣ + ∣ y ∣ + ∣ z ∣ |x+y+z|\le|x+y|+|z|\le|x|+|y|+|z| ∣ x + y + z ∣ ≤ ∣ x + y ∣ + ∣ z ∣ ≤ ∣ x ∣ + ∣ y ∣ + ∣ z ∣
proved.
Comments