Question #157548
    X^3+3X^2+X+9
      /  /   /      dx
    (X^2+1)(X^2+3)
    
    
     
1
Expert's answer
2021-01-26T03:38:01-0500

x3+3x2+x+9(x2+1)(x2+3)dx=performing partial fraction decompositionx3+3x2+x+9(x2+1)(x2+3)=A(x2+1)+B(x2+3)x(x2+3)+3(x2+1)x3+3x2+x+9(x2+1)(x2+3)dx=x(x2+3)dx+3(x2+1)dx\begin{aligned} &\int\dfrac{x^3+3x^2+x+9}{ (x^2+1)(x^2+3)} dx = \\ \\ &\textsf{performing partial fraction decomposition}\\ &\dfrac{x^3+3x^2+x+9}{ (x^2+1)(x^2+3)}= \dfrac{A}{(x²+1)} + \dfrac{B}{(x²+3)} \\ &\dfrac{x}{(x²+3)} + \dfrac{3}{(x²+1)} \\ \\ \\ &\therefore \int\dfrac{x^3+3x^2+x+9}{ (x^2+1)(x^2+3)} dx = \int\dfrac{x}{(x²+3)} dx+ \int \dfrac{3}{(x²+1)}dx \end{aligned}


for,

xx2+3dx\int \dfrac{x}{x²+3} dx \\

let u = x² + 3, du = 2xdx

121udu=lnu2+c=12ln(x2+3)+c\dfrac12\int\dfrac1udu = \dfrac{\ln u}2 + c = \dfrac12\ln (x²+3) + c


for,

3x2+1dx=31x2+1dx\int \dfrac{3}{x²+1} dx = 3\int \dfrac{1}{x²+1} dx

but, 1x2+1dx=tan1x\int \dfrac{1}{x²+1} dx = \tan^{-1}x \\

3x2+1dx=3tan1x+c\int \dfrac{3}{x²+1} dx = 3\tan^{-1}x + c




x3+3x2+x+9(x2+1)(x2+3)dx=12ln(x2+3)+3tan1x+c\begin{aligned}\therefore\int\dfrac{x^3+3x^2+x+9}{ (x^2+1)(x^2+3)} dx = \dfrac12\ln (x²+3) + 3\tan^{-1}x + c \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS