∫(x2+1)(x2+3)x3+3x2+x+9dx=performing partial fraction decomposition(x2+1)(x2+3)x3+3x2+x+9=(x2+1)A+(x2+3)B(x2+3)x+(x2+1)3∴∫(x2+1)(x2+3)x3+3x2+x+9dx=∫(x2+3)xdx+∫(x2+1)3dx
for,
∫x2+3xdx
let u = x² + 3, du = 2xdx
21∫u1du=2lnu+c=21ln(x2+3)+c
for,
∫x2+13dx=3∫x2+11dx
but, ∫x2+11dx=tan−1x
∫x2+13dx=3tan−1x+c
∴∫(x2+1)(x2+3)x3+3x2+x+9dx=21ln(x2+3)+3tan−1x+c
Comments