X^3+3X^2+X+9
/ / / dx
(X^2+1)(X^2+3)
"\\begin{aligned}\n&\\int\\dfrac{x^3+3x^2+x+9}{ (x^2+1)(x^2+3)} dx = \\\\ \\\\\n&\\textsf{performing partial fraction decomposition}\\\\\n&\\dfrac{x^3+3x^2+x+9}{ (x^2+1)(x^2+3)}= \\dfrac{A}{(x\u00b2+1)} + \\dfrac{B}{(x\u00b2+3)} \\\\ &\\dfrac{x}{(x\u00b2+3)} + \\dfrac{3}{(x\u00b2+1)} \\\\ \\\\ \\\\\n&\\therefore \\int\\dfrac{x^3+3x^2+x+9}{ (x^2+1)(x^2+3)} dx = \\int\\dfrac{x}{(x\u00b2+3)} dx+ \\int \\dfrac{3}{(x\u00b2+1)}dx\n\n\n\n\n\\end{aligned}"
for,
"\\int \\dfrac{x}{x\u00b2+3} dx \\\\"
let u = x² + 3, du = 2xdx
"\\dfrac12\\int\\dfrac1udu = \\dfrac{\\ln u}2 + c = \\dfrac12\\ln (x\u00b2+3) + c"
for,
"\\int \\dfrac{3}{x\u00b2+1} dx = 3\\int \\dfrac{1}{x\u00b2+1} dx"
but, "\\int \\dfrac{1}{x\u00b2+1} dx = \\tan^{-1}x \\\\"
"\\int \\dfrac{3}{x\u00b2+1} dx = 3\\tan^{-1}x + c"
"\\begin{aligned}\\therefore\\int\\dfrac{x^3+3x^2+x+9}{ (x^2+1)(x^2+3)} dx = \\dfrac12\\ln (x\u00b2+3) + 3\\tan^{-1}x + c\n\\end{aligned}"
Comments
Leave a comment