The equation of the parabola :- y=ax2∴Slope of the parabola at point x=2 ,(dxdy)x=2=(2ax)x=2=2a×2=4a
Now equation of the line : 2x+y=b⇒y=−2x+bSo the slope of the line =−2Now equating slopes, we get,4a=−2or, a=−21
Now, at x=2,Ordinate of parabola=a×22=2−1×22=−2and Ordinate of the line=−2×2+b=b−4Now equating the ordinates, we get,b−4=−2or, b=2∴For a=−21andb=2,2x+y=b is a tangent of y=ax2.
So,
a=−21,b=2
Comments