For which values of a and b is the line b 2x + y = tangent to the parabola 2
y = ax
when x = 2?
"\\text{The equation of the parabola :- } y=ax^2\\\\\\;\\\\\n\\therefore \\text{Slope of the parabola at point x=2 ,}\\\\\n\\left(\\dfrac{dy}{dx}\\right)_{x=2}=\\left(2ax\\right)_{x=2}=2a\\times 2=4a"
"\\text{Now equation of the line : }\\\\\n 2x+y=b\\\\\n\\Rightarrow y=-2x+b\\\\\n\\;\\\\\n\\text{So the slope of the line }=-2\\\\\\;\\\\\n\\text{Now equating slopes, we get,}\\\\\n4a=-2\\\\\n\\text{or, } a=-\\dfrac{1}{2}"
"\\text{Now, at }x=2,\\\\\n\\text{Ordinate of parabola} = a\\times2^2=\\dfrac{-1}{2}\\times2^2=-2\\\\\n\\text{and Ordinate of the line}=-2\\times 2+b=b-4\\\\\\;\\\\\n\\text{Now equating the ordinates, we get,}\\\\\nb-4=-2\\\\\n\\text{or, }b=2\\\\\\;\\\\\n\\therefore \\text{For } a=-\\dfrac{1}{2}\\;\\;\\text{and}\\;b=2, \\;\\;\\;\\; \\text{2x+y=b is a tangent of $y=ax^2$.}"
So,
Comments
Leave a comment