Question #156327

For which values of a and b is the line b 2x + y = tangent to the parabola 2

y = ax

when x = 2? 


1
Expert's answer
2021-01-19T04:34:02-0500

The equation of the parabola :- y=ax2  Slope of the parabola at point x=2 ,(dydx)x=2=(2ax)x=2=2a×2=4a\text{The equation of the parabola :- } y=ax^2\\\;\\ \therefore \text{Slope of the parabola at point x=2 ,}\\ \left(\dfrac{dy}{dx}\right)_{x=2}=\left(2ax\right)_{x=2}=2a\times 2=4a


Now equation of the line : 2x+y=by=2x+b  So the slope of the line =2  Now equating slopes, we get,4a=2or, a=12\text{Now equation of the line : }\\ 2x+y=b\\ \Rightarrow y=-2x+b\\ \;\\ \text{So the slope of the line }=-2\\\;\\ \text{Now equating slopes, we get,}\\ 4a=-2\\ \text{or, } a=-\dfrac{1}{2}


Now, at x=2,Ordinate of parabola=a×22=12×22=2and Ordinate of the line=2×2+b=b4  Now equating the ordinates, we get,b4=2or, b=2  For a=12    and  b=2,        2x+y=b is a tangent of y=ax2.\text{Now, at }x=2,\\ \text{Ordinate of parabola} = a\times2^2=\dfrac{-1}{2}\times2^2=-2\\ \text{and Ordinate of the line}=-2\times 2+b=b-4\\\;\\ \text{Now equating the ordinates, we get,}\\ b-4=-2\\ \text{or, }b=2\\\;\\ \therefore \text{For } a=-\dfrac{1}{2}\;\;\text{and}\;b=2, \;\;\;\; \text{2x+y=b is a tangent of $y=ax^2$.}


So,


a=12,  b=2\fcolorbox{black}{yellow}{\textcolor{blue}{$ a=-\dfrac{1}{2},\;b=2$}}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS