f(x)=6e2x+e−2x2+10e2x−e−2x2−65=3e2x+3e−2x+5e2x−5e−2x−65=8e2x−2e−2x−65f(x)=6\frac{e^{2x}+e^{-2x}}{2} +10\frac{e^{2x}-e^{-2x}}{2}-65=3e^{2x}+3e^{-2x}+5e^{2x}-5e^{-2x}-65=8e^{2x}-2e^{-2x}-65f(x)=62e2x+e−2x+102e2x−e−2x−65=3e2x+3e−2x+5e2x−5e−2x−65=8e2x−2e−2x−65
f′(x)=16e2x+4e−2xf'(x)=16e^{2x}+4e^{-2x}f′(x)=16e2x+4e−2x
f'(x)>0 - There is no stationary points and points of inflexion
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments