"=1+\\dfrac{1}{2}x+\\dfrac{\\dfrac{1}{2}(\\dfrac{1}{2}-1)}{2!}x^2+\\dfrac{\\dfrac{1}{2}(\\dfrac{1}{2}-1)(\\dfrac{1}{2}-2)}{3!}x^3+..."
"f(x)=x\\sqrt{1+x}=x+\\dfrac{1}{2}x^2-\\dfrac{1}{8}x^3+\\dfrac{1}{16}x^3-\\dfrac{5}{128}x^4+..."
The function "g(x)=x(\\cosh x)^{1\/x}" is not defined at "x=0." Therefore we cannot write down the Maclaurin expression of the following function.
By the calculator
"x\\sqrt{1+x}+x(\\cosh x)^{1\/x}\\approx2x+x^2-\\dfrac{5}{64}x^5"
"e^x-1=x+\\dfrac{1}{2}x^2+\\dfrac{1}{6}x^3+\\dfrac{1}{24}x^4+\\dfrac{1}{120}x^5+..."
"(e^x-1)^3\\approx x^3+\\dfrac{3}{2}x^4+\\dfrac{5}{4}x^5"
"\\lim\\limits_{x\\to0}(\\dfrac{4(x\\sqrt{1+x}+x(\\cosh x)^{1\/x})}{(e^x-1)^3})"
"=\\lim\\limits_{x\\to0}(\\dfrac{4(2x+x^2-\\dfrac{5}{64}x^5)}{x^3+\\dfrac{3}{2}x^4+\\dfrac{5}{4}x^5})"
"=-\\dfrac{1}{4},x\\not=0"
Comments
Leave a comment