(i) "x\\in I, I=(\\dfrac{1}{4}, \\ \\dfrac{1}{2})"
"f'(x)=(\\dfrac{1}{1+e^x})'=-\\dfrac{e^x}{(1+e^x)^2}<0, x\\in \\R"
Therefore the function "f(x)" decreases for "x\\in \\R."
"f(\\dfrac{1}{2})=\\dfrac{1}{1+e^{1\/2}}>\\dfrac{1}{1+(4)^{1\/2}}=\\dfrac{1}{1+2}=\\dfrac{1}{3}>\\dfrac{1}{4}"
Therefore
Therefore if "x\\in I," then "f(x)\\in I."
(ii)
"f''(x)=(-\\dfrac{e^x}{(1+e^x)^2})'"
"=-\\dfrac{e^x(1+e^x)^2-2e^{2x}(1+e^x)}{(1+e^x)^4}"
"=\\dfrac{e^x(e^x-1)}{(1+e^x)^3}>0, x>0"
Therefore for "x>0" the function "f'(x)" increases and "f(x)<0."
Therefore for "x>0" the function "|f'(x) |" decreases and "|f(x)|>0."
"|f'(x)|\\leq\\dfrac{1}{4}, x\\in I"
(iii)
Let "x=0.3, s=0.3"
"\\dfrac{1}{4}|x-s|=\\dfrac{1}{4}|0.3-0.3|=0"
Hence the statement
is False.
Comments
Leave a comment