(i)f(x)=1+ex1f(Un)=1+eUn1ex+e−x2=coshx11+e2x1=2coshxe−xf(x)=1+ex1=2cosh(2x)e−2xf(0)=1+e01=21Ifx∈I=(41,21)thenf(x)<f(0)=21,f(x)>f(1)=1+e1>1+31=41,and hence,f(x)∈I.u0∈Iimpliesu1=f(u0)∈I.un∈Iforn∈Nimpliesun+1=f(un)∈Iand, by induction,un∈I∀n∈NProved(ii)h(x)=f(x)−x=1+ex1−xis a continuous function.h(41)=f(41)−41>f(1)−41=1+e1−41>1+31−41=0h(21)=f(21)−21<f(0)−21=0Therefore, by the intermediate valuetheorem we have that there exists a roots∈Iof this function, that is, a numberssuch thatf(s)=sBy MVTun−sun+1−s=un−sf(un)−f(s)=f′(ϵn)forϵn∈(un,s)1+ex≥2e2x(AP≥GP)∣f′(ϵn)∣=(1+ex)2ex≤(2e2x)2ex≤4exex=41Comparing the last two formulae, we have∣un+1−s∣≤4∣un−s∣,Proved
Comments
Leave a comment