"\\displaystyle\n(i)\\\\ f(x) = \\frac{1}{1 + e^x}\\\\\n\nf(U_n) = \\frac{1}{1 + e^{U_n}}\\\\\n\n\n\\frac{2}{e^x + e^{-x}} = \\frac{1}{\\cosh{x}}\\\\\n\n\\frac{1}{1 + e^{2x}} = \\frac{e^{-x}}{2\\cosh{x}}\\\\\n\nf(x) = \\frac{1}{1 + e^{x}} = \\frac{e^{-\\frac{x}{2}}}{2\\cosh\\left(\\frac{x}{2}\\right)}\\\\\n\nf(0) = \\frac{1}{1 + e^{0}} = \\frac{1}{2}\\\\\n\n\\textsf{If}\\,\\, x \\in I = \\left(\\frac{1}{4}, \\frac{1}{2}\\right) \\,\\, \\textsf{then} \\\\ \n\nf(x) < f(0) = \\frac{1}{2}, \\\\\n\nf(x) > f(1) = \\frac{1}{1 + e} > \\frac{1}{1 + 3} = \\frac{1}{4},\\\\\n\n\\textsf{and hence,}\\,\\, f(x) \\in I. \\\\\n\nu_0 \\in I \\,\\, \\textsf{implies}\\,\\, u_1 = f(u_0) \\in I. \\\\\n\n\nu_n \\in I\\,\\, \\textsf{for} \\,\\, n \\in \\mathbb{N} \\textsf{implies}\\\\\n\nu_{n + 1} = f(u_n) \\in I\\,\\, \\textsf{and, by induction,} \\\\\n\nu_n \\in I \\,\\, \\forall \\,\\, n \\in \\mathbb{N} \\\\\n\\textbf{\\textsf{Proved}}\\\\\n(ii) \\\\\n\nh(x) = f(x) - x = \\frac{1}{1 + e^x} - x\\,\\,\\\\\n \\textsf{is a continuous function.}\\\\\n\nh\\left(\\frac{1}{4}\\right) = f\\left(\\frac{1}{4}\\right) - \\frac{1}{4} > f(1) - \\frac{1}{4} \\\\=\n\\frac{1}{1 + e} - \\frac{1}{4} > \\frac{1}{1 + 3} - \\frac{1}{4} = 0 \\\\\n\nh\\left(\\frac{1}{2}\\right) = f\\left(\\frac{1}{2}\\right) - \\frac{1}{2} < f(0) - \\frac{1}{2} = 0\\\\\n\n\\textsf{Therefore, by the intermediate value}\\\\\n\\textsf{theorem we have that there exists a root}\\,\\, s \\in I \\\\\n\\textsf{of this function, that is, a number}\\,\\, s \\,\\, \\textsf{such that}\\\\\n\n\nf(s) = s\\\\\n\n\\textsf{By MVT}\\\\\n\n\\frac{u_{n + 1} - s}{u_n - s} = \\frac{f(u_n) - f(s)}{u_n - s} = f'(\\epsilon_n) \\\\\n\n\\textsf{for} \\,\\,\\epsilon_n \\in (u_n, s) \\\\\n\n\n1 + e^x \\geq 2e^{\\frac{x}{2}} \\,\\,\\,\\,\\, (AP \\geq GP) \\\\\n\n|f'(\\epsilon_n)| = \\frac{e^x}{(1 + e^x)^2} \\leq \\frac{e^x}{(2e^{\\frac{x}{2}})^2} \\leq \\frac{e^x}{4e^x} = \\frac{1}{4} \\\\\n\n\n\\textsf{Comparing the last two formulae, we have}\\\\\n|u_{n + 1} - s| \\leq \\frac{|u_n - s|}{4}, \\\\\n\\textbf{\\textsf{Proved}}"
Comments
Leave a comment