Answer:
Step 1
U0= -1
U1= 21
Un+2= Un+1 - 41Un
U2=U1- 41U0 = 21- 41(-1) = 21+ 41 = 43
U3= U2 - 41U1= 43 - 41 ( 21) = 43- 81 = 85
U4= U3 - 41U2 = 85- 163 = 167
Now, Vn= Un+1- 21 Un
V0 = U1- 21U0= 21 - 21(-1) = 21+ 21= 1
V1= U2- 21U1 = 43- 21( 21)= 43 - 41 - 42
V2 = U3 - 21U2 = 85- 21(43) = 85 - 83 = 82
V3 = U4 - 21U3 = 167 - 21(85) = 167 - 165= 162
Step 2
i)
Now, Wn =VnUn
W0 = V0U0 = 1−1 = -1
W1= V1U1 = 4221 = 1
W2= V2U2 = 8243 = 3
W3 = V3U3 = 16285 = 5
W0, W1, W2, W3, --- = -1, 1, 3, 5, ---
We can easily observe that there is a common difference of 2 in every term.
So, it forms an arithmetic sequence with d= 2 , a = -1 where d is the difference and a the initial value.
ii) Wn = 2n - 1
for limit lim 2n - 1 = ∞
n→ ∞
Comments