Answer:
Step 1
U0= -1
U1= "1 \\over 2"
Un+2= Un+1 - "1 \\over 4"Un
U2=U1- "1 \\over 4"U0 = "1 \\over 2"- "1 \\over 4"(-1) = "1 \\over 2"+ "1 \\over 4" = "3 \\over 4"
U3= U2 - "1 \\over 4"U1= "3 \\over 4" - "1 \\over 4" ( "1 \\over 2") = "3 \\over 4"- "1 \\over 8" = "5 \\over 8"
U4= U3 - "1 \\over 4"U2 = "5 \\over 8"- "3 \\over 16" = "7 \\over 16"
Now, Vn= Un+1- "1 \\over 2" Un
V0 = U1- "1 \\over 2"U0= "1 \\over 2" - "1 \\over 2"(-1) = "1 \\over 2"+ "1 \\over 2"= 1
V1= U2- "1 \\over 2"U1 = "3 \\over 4"- "1 \\over 2"( "1 \\over 2")= "3 \\over 4" - "1 \\over 4" - "2 \\over 4"
V2 = U3 - "1 \\over 2"U2 = "5 \\over 8"- "1 \\over 2"("3 \\over 4") = "5 \\over 8" - "3 \\over 8" = "2 \\over 8"
V3 = U4 - "1 \\over 2"U3 = "7 \\over 16" - "1 \\over 2"("5 \\over 8") = "7 \\over 16" - "5 \\over 16"= "2 \\over 16"
Step 2
i)
Now, Wn ="U_n \\over V_n"
W0 = "U_0 \\over V_0" = "-1 \\over 1" = -1
W1= "U_1 \\over V_1" = "{1 \\over 2} \\over { 2 \\over 4}" = 1
W2= "U_2 \\over V_2" = "{3 \\over 4} \\over { 2 \\over 8}" = 3
W3 = "U_3 \\over V_3" = "{5 \\over 8} \\over { 2 \\over 16}" = 5
W0, W1, W2, W3, --- = -1, 1, 3, 5, ---
We can easily observe that there is a common difference of 2 in every term.
So, it forms an arithmetic sequence with d= 2 , a = -1 where d is the difference and a the initial value.
ii) Wn = 2n - 1
for limit lim 2n - 1 = ∞
n→ ∞
Comments
Leave a comment