If f(*)=$(1/*^2 +2* -3)d* find f(*) given that f(2) =2
"If\\ f(x)=(\\frac{1}{x^2} +2x -3)dx.\\\\ Find\\ f(x)\\ given\\ that\\ f(2) =2"
This means "f'(x)=x^{-2}+2x-3"
Integrate "f'(x)" :
"f'(x)=x^{-2}+2x-3,\\intop\\frac{1}{x^2}dx+\\intop 2xdx-\\intop 3dx=-\\frac{1}{x}+x^2-3x+c\\\\\nf(x)=\\frac{1}{x}+x^2-3x+c,\\\\\nBut\\ f(2)=2\\\\\nf(2)=2=\\frac{1}{2}+2^2-3(2)+c,\\\\\nc=\\frac{9}{2}\\\\\n\\implies f(x)=\\frac{1}{x}+x^2-3x+\\frac{9}{2}\\\\"
Comments
Leave a comment