We shall use the formulas:
dxdy=dtdxdtdy, dx2d2y=dtdxdtd(dxdy)
a.) x=e2t,y=tln(t)
dxdy=2e2tln(t)+tt1=2e2tln(t)+1
dx2d2y=2e2t1⋅4e4tt12e2t−(ln(t)+1)4e2t=4te4t1−2t(ln(t)+1)
b.) x=sinh(t),y=cosh(t)
dxdy=cosh(t)sinh(t)=tanh(t)
dx2d2y=cosh(t)1−tanh2(t)
c.) x=1−t2,y=1+t
dxdy=−2t1=−2t1
dx2d2y=−2t1⋅2t21=−4t31
Comments
Leave a comment