Answer to Question #155284 in Calculus for Pia

Question #155284

Find dy/dx and d²y/dx² without eliminating the parameter.


a.) x= e^(2t) , y= t In(t)

b.) x= sinh(t) , y= cosh(t)

c.) x= 1-t^2 , y= 1+t


1
Expert's answer
2021-01-13T19:28:24-0500

We shall use the formulas:


dydx=dydtdxdt,  d2ydx2=ddt(dydx)dxdt\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}},\ \ \frac{d^2y}{dx^2}=\frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}


a.) x=e2t,y=tln(t)x= e^{2t} , y= t\ln(t)


dydx=ln(t)+t1t2e2t=ln(t)+12e2t\frac{dy}{dx}=\frac{\ln(t)+t\frac{1}{t}}{2e^{2t}}=\frac{\ln(t)+1}{2e^{2t}}


d2ydx2=12e2t1t2e2t(ln(t)+1)4e2t4e4t=12t(ln(t)+1)4te4t\frac{d^2y}{dx^2}=\frac{1}{2e^{2t}}\cdot \frac{\frac{1}{t}2e^{2t}-(\ln(t)+1)4e^{2t}}{4e^{4t}}= \frac{1-2t(\ln(t)+1)}{4te^{4t}}



b.) x=sinh(t),y=cosh(t)x= \sinh(t) , y= \cosh(t)


dydx=sinh(t)cosh(t)=tanh(t)\frac{dy}{dx}=\frac{\sinh(t)}{\cosh(t)}=\tanh(t)


d2ydx2=1tanh2(t)cosh(t)\frac{d^2y}{dx^2}=\frac{1-\tanh^2(t)}{\cosh(t)}



c.) x=1t2,y=1+tx= 1-t^2 , y= 1+t


dydx=12t=12t\frac{dy}{dx}=\frac{1}{-2t}=-\frac{1}{2t}


d2ydx2=12t12t2=14t3\frac{d^2y}{dx^2}=\frac{1}{-2t}\cdot\frac{1}{2t^2}=-\frac{1}{4t^3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment