Find dy/dx and d²y/dx² without eliminating the parameter.
a.) x= e^(2t) , y= t In(t)
b.) x= sinh(t) , y= cosh(t)
c.) x= 1-t^2 , y= 1+t
We shall use the formulas:
"\\frac{dy}{dx}=\\frac{\\frac{dy}{dt}}{\\frac{dx}{dt}},\\ \\ \\frac{d^2y}{dx^2}=\\frac{\\frac{d}{dt}(\\frac{dy}{dx})}{\\frac{dx}{dt}}"
a.) "x= e^{2t} , y= t\\ln(t)"
"\\frac{dy}{dx}=\\frac{\\ln(t)+t\\frac{1}{t}}{2e^{2t}}=\\frac{\\ln(t)+1}{2e^{2t}}"
"\\frac{d^2y}{dx^2}=\\frac{1}{2e^{2t}}\\cdot \\frac{\\frac{1}{t}2e^{2t}-(\\ln(t)+1)4e^{2t}}{4e^{4t}}=\n \\frac{1-2t(\\ln(t)+1)}{4te^{4t}}"
b.) "x= \\sinh(t) , y= \\cosh(t)"
"\\frac{dy}{dx}=\\frac{\\sinh(t)}{\\cosh(t)}=\\tanh(t)"
"\\frac{d^2y}{dx^2}=\\frac{1-\\tanh^2(t)}{\\cosh(t)}"
c.) "x= 1-t^2 , y= 1+t"
"\\frac{dy}{dx}=\\frac{1}{-2t}=-\\frac{1}{2t}"
"\\frac{d^2y}{dx^2}=\\frac{1}{-2t}\\cdot\\frac{1}{2t^2}=-\\frac{1}{4t^3}"
Comments
Leave a comment