Question #155280

Find dy/dx and d^2y/dx^2 without eliminating the parameter.


1. x=1-t^2 ; y=1+t


1
Expert's answer
2021-01-13T19:34:34-0500

We have x=1t2x = 1 - t^2 and y=1+ty=1+t

We must find  dydx\large\frac{dy}{dx} and d2ydx2\large\frac{d^2y}{dx^2} without eliminating the parameter t

dydx=(1+t)(1t2)=12t\large\frac{dy}{dx} = \large\frac{(1+t)'}{(1-t^2)} = \large\frac{1}{-2t}

from this  x=1t2x = 1 - t^2 , we find t=1xt = \sqrt{1-x}

dydx=121x\large\frac{dy}{dx} = -\large\frac{1}{2\sqrt{1-x}}

d2ydx2=\large\frac{d^2y}{dx^2} = (121x)=14(1x)3( -\large\frac{1}{2\sqrt{1-x}})' = \large\frac{1}{4\sqrt{(1-x)^3}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS