Find dy/dx and d^2y/dx^2 without eliminating the parameter.
1. x=1-t^2 ; y=1+t
We have x=1−t2x = 1 - t^2x=1−t2 and y=1+ty=1+ty=1+t
We must find dydx\large\frac{dy}{dx}dxdy and d2ydx2\large\frac{d^2y}{dx^2}dx2d2y without eliminating the parameter t
dydx=(1+t)′(1−t2)=1−2t\large\frac{dy}{dx} = \large\frac{(1+t)'}{(1-t^2)} = \large\frac{1}{-2t}dxdy=(1−t2)(1+t)′=−2t1
from this x=1−t2x = 1 - t^2x=1−t2 , we find t=1−xt = \sqrt{1-x}t=1−x
dydx=−121−x\large\frac{dy}{dx} = -\large\frac{1}{2\sqrt{1-x}}dxdy=−21−x1
d2ydx2=\large\frac{d^2y}{dx^2} =dx2d2y= (−121−x)′=14(1−x)3( -\large\frac{1}{2\sqrt{1-x}})' = \large\frac{1}{4\sqrt{(1-x)^3}}(−21−x1)′=4(1−x)31
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments