Find dy/dx and d^2y/dx^2 without eliminating the parameter.
1. x=1-t^2 ; y=1+t
We have "x = 1 - t^2" and "y=1+t"
We must find "\\large\\frac{dy}{dx}" and "\\large\\frac{d^2y}{dx^2}" without eliminating the parameter t
"\\large\\frac{dy}{dx} = \\large\\frac{(1+t)'}{(1-t^2)} = \\large\\frac{1}{-2t}"
from this "x = 1 - t^2" , we find "t = \\sqrt{1-x}"
"\\large\\frac{dy}{dx} = -\\large\\frac{1}{2\\sqrt{1-x}}"
"\\large\\frac{d^2y}{dx^2} =" "( -\\large\\frac{1}{2\\sqrt{1-x}})' = \\large\\frac{1}{4\\sqrt{(1-x)^3}}"
Comments
Leave a comment