Question #155273

Find the mass of the solid in the shape of the tetrahedron that is bounded by the planes x + y + z = 1 , xy- plane, xz- plane and yz- plane if its density is given by 𝛿(x, y, z) = x 


1
Expert's answer
2021-01-13T19:18:54-0500

The mass of the solid region EE is evaluated as,


m=Eδ(x,y,z)dVm=\iiint_{E}\delta(x,y,z)dV ,


where E={(x,y,z)0x1,0y1x,0z1xy}E=\lbrace(x,y,z)|0\eqslantless x \eqslantless 1, 0 \eqslantless y \eqslantless 1-x, 0 \eqslantless z \eqslantless1-x-y\rbrace


and δ(x,y,z)=x\delta(x,y,z)=x


So, the mass of the solid is,


m=0101x01xy(x)dzdydxm=\int_{0}^{1}\int_{0}^{1-x}\int_{0}^{1-x-y}(x)dzdydx


=0101xx(1xy)dydx=\int_{0}^{1}\int_{0}^{1-x}x(1-x-y)dydx


=01x[(1x)yy22]y=01xdx=\int_{0}^{1}x[(1-x)y-\frac{y^2}{2}]_{y=0}^{1-x}dx


=01x[(1x)(1x)(1x)22]dx=\int_{0}^{1}x[(1-x)(1-x)-\frac{(1-x)^2}{2}]dx


=01x[(1x)2(1x)22]dx=\int_{0}^{1}x[(1-x)^2-\frac{(1-x)^2}{2}]dx


=1201x(1x)2dx=\frac{1}{2}\int_{0}^{1}x(1-x)^2dx


=1201x(1+x22x)dx=\frac{1}{2}\int_{0}^{1}x(1+x^2-2x)dx


=1201(x+x32x2)dx=\frac{1}{2}\int_{0}^{1}(x+x^3-2x^2)dx


=12[x22+x442(x33)]01=\frac{1}{2}[\frac{x^2}{2}+\frac{x^4}{4}-2(\frac{x^3}{3})]_{0}^{1}


=12[12+1423]=\frac{1}{2}[\frac{1}{2}+\frac{1}{4}-\frac{2}{3}]


=12(112)=\frac{1}{2}(\frac{1}{12})


=124=\frac{1}{24}


Therefore, the mass of the solid region EE is m=Eδ(x,y,z)dV=124m=\iiint_{E}\delta(x,y,z)dV=\frac{1}{24}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS