The mass of the solid region E is evaluated as,
m=∭Eδ(x,y,z)dV ,
where E={(x,y,z)∣0⪕x⪕1,0⪕y⪕1−x,0⪕z⪕1−x−y}
and δ(x,y,z)=x
So, the mass of the solid is,
m=∫01∫01−x∫01−x−y(x)dzdydx
=∫01∫01−xx(1−x−y)dydx
=∫01x[(1−x)y−2y2]y=01−xdx
=∫01x[(1−x)(1−x)−2(1−x)2]dx
=∫01x[(1−x)2−2(1−x)2]dx
=21∫01x(1−x)2dx
=21∫01x(1+x2−2x)dx
=21∫01(x+x3−2x2)dx
=21[2x2+4x4−2(3x3)]01
=21[21+41−32]
=21(121)
=241
Comments