Find the mass of the solid in the shape of the tetrahedron that is bounded by the planes x + y + z = 1 , xy- plane, xz- plane and yz- plane if its density is given by 𝛿(x, y, z) = x
The mass of the solid region "E" is evaluated as,
"m=\\iiint_{E}\\delta(x,y,z)dV" ,
where "E=\\lbrace(x,y,z)|0\\eqslantless x \\eqslantless 1, 0 \\eqslantless y \\eqslantless 1-x, 0 \\eqslantless z \\eqslantless1-x-y\\rbrace"
and "\\delta(x,y,z)=x"
So, the mass of the solid is,
"m=\\int_{0}^{1}\\int_{0}^{1-x}\\int_{0}^{1-x-y}(x)dzdydx"
"=\\int_{0}^{1}\\int_{0}^{1-x}x(1-x-y)dydx"
"=\\int_{0}^{1}x[(1-x)y-\\frac{y^2}{2}]_{y=0}^{1-x}dx"
"=\\int_{0}^{1}x[(1-x)(1-x)-\\frac{(1-x)^2}{2}]dx"
"=\\int_{0}^{1}x[(1-x)^2-\\frac{(1-x)^2}{2}]dx"
"=\\frac{1}{2}\\int_{0}^{1}x(1-x)^2dx"
"=\\frac{1}{2}\\int_{0}^{1}x(1+x^2-2x)dx"
"=\\frac{1}{2}\\int_{0}^{1}(x+x^3-2x^2)dx"
"=\\frac{1}{2}[\\frac{x^2}{2}+\\frac{x^4}{4}-2(\\frac{x^3}{3})]_{0}^{1}"
"=\\frac{1}{2}[\\frac{1}{2}+\\frac{1}{4}-\\frac{2}{3}]"
"=\\frac{1}{2}(\\frac{1}{12})"
"=\\frac{1}{24}"
Comments
Leave a comment