Let's solve this problem
∫x1−x2dx\int\large\frac{x}{1-x^2}dx∫1−x2xdx
Substituting u=1−x2→dudx=−2x(steps)→dx=−12xdu:u = 1-x^2 \to \large\frac{du}{dx} = -2x(steps) \to dx=-\large\frac{1}{2x}du:u=1−x2→dxdu=−2x(steps)→dx=−2x1du:
=−12∫1udu= -\frac{1}{2}\int\large\frac{1}{u}du=−21∫u1du
Now solving: ∫1udu=ln∣u∣+C\int \large\frac{1}{u}du = ln|u|+C∫u1du=ln∣u∣+C
Plug in solved integrals: −12∫1udu=−ln∣u∣2+C-\frac{1}{2}\int\large\frac{1}{u}du = -\large\frac{ln|u|}{2}+C−21∫u1du=−2ln∣u∣+C
Substituting back u=1−x2:u = 1-x^2:u=1−x2: ∫x1−x2dx=−ln(1−x2)2+C\int\large\frac{x}{1-x^2}dx = -\large\frac{ln(1-x^2)}{2}+C∫1−x2xdx=−2ln(1−x2)+C
Answer: −ln(∣x2−1∣)2+C-\large\frac{ln(|x^2-1|)}{2} + C−2ln(∣x2−1∣)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment