Let's solve this problem
"\\int\\large\\frac{x}{1-x^2}dx"
Substituting "u = 1-x^2 \\to \\large\\frac{du}{dx} = -2x(steps) \\to dx=-\\large\\frac{1}{2x}du:"
"= -\\frac{1}{2}\\int\\large\\frac{1}{u}du"
Now solving: "\\int \\large\\frac{1}{u}du = ln|u|+C"
Plug in solved integrals: "-\\frac{1}{2}\\int\\large\\frac{1}{u}du = -\\large\\frac{ln|u|}{2}+C"
Substituting back "u = 1-x^2:" "\\int\\large\\frac{x}{1-x^2}dx = -\\large\\frac{ln(1-x^2)}{2}+C"
Answer: "-\\large\\frac{ln(|x^2-1|)}{2} + C"
Comments
Leave a comment