Find the dimensions of the right circular cone of least volume that can be circumscribed about a sphere of radius a. Hint: x+2a=altitude of cone
In Triangle AOB,
AO2+AB2=OB2AO^2+AB^2=OB^2AO2+AB2=OB2
(h−a)2+r2=a2(h-a)^2+r^2=a^2(h−a)2+r2=a2
⟹ r2=a2−(h−a)2\implies r^2 = a^2-(h-a)^2⟹r2=a2−(h−a)2
Volume of the Cone, V=13πr2h=13π[a2−(h−a)2]hV = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi [ a^2-(h-a)^2 ]hV=31πr2h=31π[a2−(h−a)2]h
For maximum and minimum,
dVdh=0\frac{dV}{dh}=0dhdV=0
Then,
dVdh=13π[−2(h−a)h+a2−(h−a)2]=0\frac{dV}{dh}= \frac{1}{3}\pi[ -2(h-a)h+a^2-(h-a)^2 ] =0dhdV=31π[−2(h−a)h+a2−(h−a)2]=0
⟹ h=43a\implies h = \frac{4}{3}a⟹h=34a
Then, r=223ar =\frac{2\sqrt{2}}{3}ar=322a
Then, Volume will be, V=3281πa3V = \frac{32}{81}\pi a^3V=8132πa3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments