Find the dimensions of the right circular cone of least volume that can be circumscribed about a sphere of radius a. Hint: x+2a=altitude of cone
In Triangle AOB,
"AO^2+AB^2=OB^2"
"(h-a)^2+r^2=a^2"
"\\implies r^2 = a^2-(h-a)^2"
Volume of the Cone, "V = \\frac{1}{3}\\pi r^2 h = \\frac{1}{3}\\pi [ a^2-(h-a)^2 ]h"
For maximum and minimum,
"\\frac{dV}{dh}=0"
Then,
"\\frac{dV}{dh}= \\frac{1}{3}\\pi[ -2(h-a)h+a^2-(h-a)^2 ] =0"
"\\implies h = \\frac{4}{3}a"
Then, "r =\\frac{2\\sqrt{2}}{3}a"
Then, Volume will be, "V = \\frac{32}{81}\\pi a^3"
Comments
Leave a comment