Exercise 3. Let α and β be two real numbers so that α ≤ β and β ≤ α. Then prove α = β.
α⩽β\alpha \leqslant \betaα⩽β ⟹ \implies⟹α∈(−∞,β]\alpha \isin (-\infty,\beta]α∈(−∞,β]
β⩽α\beta \leqslant \alphaβ⩽α ⟹ \implies⟹ α∈[β,∞)\alpha\isin [\beta, \infty)α∈[β,∞)
⟹ α∈(−∞,β]⋂[β,∞)=[ββ]={β}\implies \alpha \isin (-\infty,\beta] \bigcap [\beta,\infty)=[\beta\beta]=\{\beta\}⟹α∈(−∞,β]⋂[β,∞)=[ββ]={β}
⟹ α=β\implies \alpha=\beta⟹α=β
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments